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Abstract

We address the issue of endowing a logical framework with a logically justified notion of negation. Logical
frameworks with a logic programming interpretation such as hereditary Harrop formulae cannot directly
express negative information, although negation is a useful specification tool. Since negation-as-failure does
not fit well in a logical framework, especially one endowed with hypothetical and parametric judgments, we
adapt the idea of elimination of negation from Horn logic to a fragment of higher-order hereditary Harrop
formulae. The idea is to replace occurrences of negative predicates with positive ones which are operationally
equivalent. This entails two separate phases. ‘

Complementing terms, i.e. in our case higher-order patterns. Due the presence of partially applied lambda
terms, intuitionistic lambda calculi are not closed under complementation. We thus develop a strict lambda
calculus, where we can directly express whether a function depends on its argument.

Complementing clauses. This can be seen as a negation normal form procedure which is consistent with
intuitionistic provability. It entails finding a middle ground between the Closed World Assumption usually
associated with negation and the Open World Assumption typical of logical frameworks. As this is in
general not possible, we restrict ourselves to a fragment in which clause complementation is viable and that
has proven to be expressive enough for the practice of logical frameworks. The main technical idea is to
isolate a set of programs where static and dynamic clauses do not overlap.
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Chapter 1

Introduction

Suppose we are giving a formal definition of a programming language in the style of natural semantics
[Kah87]; after we have specified the abstract syntax, the type system (e : 7) and a small step evaluation
semantics (e — €'), it is time to check their consistency via a proof of type soundness. We may start
by attempting the Progress lemma, which will eventually guarantee that well-typed expressions cannot go
wrong; in symbols, this could go like this: for every expressions e such that e : 7 and e is not a value,
there exists an expression e’ such that e — e'. Now, imagine that our language is fairly sophisticated
and our funding agency requires a machine-checkable verification of our results. Thus, we decide to use
an automated reasoning tool, possibly an interactive one. A proof of progress is a rather trivial structural
induction for a human, but in order to be machine checked, it needs to be spelled out in every detail. We
may have implemented judgments defining expressions, values, typing and evaluation: but what about the
notion of not being a value? We may try to reason in a strictly intuitionistic way and view —walue(e) as
the derivation of a contradiction L from the assumption value(e). This is possible, but certainly not in the
spirit of the proof; ~walue(e) is just a test, a way to sift out expressions that are already fully evaluated.
What we really need is a positive (inductive) definition of “not being a value”, say nonwvalue(e); indeed,
this should be possible, since non-values are exactly those expressions which are not values. Nevertheless,
manually coding this notion may be tedious and error-prone, especially considering evolution of our initial
specification. Moreover, we will also have the obligation of proving, at least to our satisfaction, that the
explicit definition of ‘non-value’ coincides with the negation of ‘value’. Lacking this, our formal verification
cannot be entirely trusted.

For another example consider a simple instance of reasoning about process algebra, such as Peterson’s
algorithm for mutual exclusion [Pet81]. The problem here is to ensure that two processes can never be
simultaneously in their critical section. A process can be in several (possibly many) states, such as sleeping,
trying, critical;a transition relation describes how the system moves from a state to another, according
to whether a process is allowed to change its status. Suppose we want to verify some property of the system
such as safety: for any possible sequence of transitions if the initial state is safe, so is the final one. Now,
from the description of the problem, it is apparent that a state is safe if both process are not in their critical
section. It would benefit the verification attempt to have a positive explicit specification of being a safe
state, rather than working with an implicit negative one. Not only the number of states can be fairly large,
but consider the natural extension of the same problem to n-processes: a hand-written positive specification
of a state being safe can be incomplete or plain wrong. Again, over time, the number of states will increase
or possibly decrease and the safety specification needs to evolve accordingly.

The bottom line is that negation is a very common connective in a specification — and rightly so, since it is
one of the most basic logic operators. Formalizations that use negation are often sharper and more concise.
Nevertheless, not every automated reasoning tool available nowadays is able to provide an appropriate
handling of this connective. This is particularly problematic for logical frameworks based on higher-order logic
or type-theory with a logic programming interpretation, such as Twelf [SP98] and AProlog [NM88, Mil89b).
While the latter provide a very advanced unified environment for the specification, implementation and
verification of deductive systems, they inherit the traditional problems with negation, which Prolog has
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struggled with since its inception. These problems are further augmented by some of their more beneficial
features; namely by being ‘higher-order’ and being based on intuitionistic provability. Those characteristics
are the main key elements of the success of those frameworks and should be preserved under every extension.
This dissertation presents an approach to endow those languages with a logically sound notion of negation
without sacrifying any part of their representation power.

1.1 Logical Frameworks

A logical framework [Pfe00a] is a meta-language for the specification, implementation and verification of
deductive systems and their meta-theory. Deductive systems consist of axioms and rules defining derivable
judgments; they can be used to specify logics and aspects of programming languages such as operational
semantics, type systems, abstract machines and compilation.

Logical frameworks offer a bridge between the success of declarative programming languages (logic and
functional) and the unsatisfactory results of general theorem proving. There is perhaps a reasonable middle
way between Poincare’s derision to the logicist approach:

“If you need twenty-seven equations to prove that 1 is a natural number, how many will you need
to prove a real theorem?”!,

and Wos’ claim to have solved with OTTER real mathematical open questions (see [WM91] for a depressing
list).

Many logical framework have been proposed in the literature (see [Pfe00a] for an overview) and many
extensions are also under consideration. However, we must carefully balance the benefits that any proposed
extension can bring against the complications its meta-theory would incur. We have two main issues to
consider:

1. It is been argued that logical frameworks should be by design as weak as possible [dB91], in order to:

¢ Simplify proofs of adequacy of encodings.
o Allow effective checking of the validity of derivations.
e Reduce the complexity of proof-search.

e Inherit a treatable unification problem.

2. At the same time logical frameworks must provide powerful tools to support the design process of
deductive systems. Experience has shown that the strength of a logical framework is proportional to
the ease it makes encodings simple and concise. The more direct is the encoding, the easier is to reason
about it. One well known example is higher-order abstract syntax [PE88], which moves renaming and
substitution principles to the meta-language; this avoids the explicit programming and proving of a
large series of low-level results about those trivial but ubiquitous concepts. Another example is the
reification of derivations as proof terms in type-theoretic languages, which reduces run-time check for
correctness of derivations to type-checking in the meta-language.

The approach taken in the Twelf project is a “pay as you go” one. In other words, every extension is
carefully crafted so as to be conservative on the operational and declarative semantics of the core language.
Examples are the linear extension [CP96] or refinement types [P{e93].

1.2 Negation

The aim of this thesis is to develop a framework for the synthesis of the negation of logic programs in logical
frameworks such as hereditary Harrop formulae (HHF) [MNPS91] and its implementation in AProlog [NM88].
We intend this to set the basis for type-theoretic frameworks such as LF [HHP93] and its implementation
Twelf [SP98] and possibly their linear refinement as Lolli [HM94] and LLF [CP96]. This approach could

1Les dernieres efforts des logiciens, in Science et Methode, p. 193.
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also be useful for (inuitionistic) generic theorem proving systems, especially ones based on higher-order logic
or type theory such as Isabelle [Isa98] and Coq[DFH*93]. :

Those systems (Isabelle and Coq excluded) do not provide a primitive negation operator. Indeed, con-
structive logics usually implement negative information as -4 = A — L, where L denotes absurdity and
the Duns Scoto Law is the elimination rule. Thus negative predicates have no special status; that would
correspond to explicitly coding negative information in a program, which is entirely consistent with the pro-
cedural interpretation of hypothetical judgments available in logical frameworks with a logic programming
interpretation. However, this would not only significantly complicate goal-oriented proof search (as it is
manifested in the difficulty of implementing, for example, the full logic of Forum [Mil94]), but providing
negative definitions seems to be particularly error-prone, repetitive and not particularly interesting; more
importantly, in a logical framework we have also to fulfill the proof obligation that the proposed negative
definition does behave as the complement (of its positive counterpart).

Providing a viable negation operator has an immediate practical relevance in programming in those
languages, since it relieves the user from the burden of explicitly encoding negative information in the form
of clauses which express the condition for a predicate not to hold. Automating the synthesis of negative
information has not only a clear benefit in the logic programming sense, but it may also have a rather
dramatic effect on the possibility of implementing deductive systems that would prove to be too unwieldy
to deal with otherwise. The synthesis of the negation of predicates such as typable, well-formed, canonical
form, subsort, value etc.—as well as Prolog-like predicates such as equality, set membership and the like-will
increase the amount of meta-theory that can be formalized.

Of course, the addition of negation does not change the recursion-theoretic expressive power of a language,
but we claim that it does make a difference at the representation level. To bring this to the extreme,
deductive systems can be expressed eventually in, say, first-order Horn logic and ideally proved-checked or
even demonstrated by a resolution theorem prover or more likely by an interactive one. In practice, this has
turned out to be very problematic, if not a total failure; hence the refinement of the tools to higher-order
logic and type-theory.

Traditionally, negation-as-failure (NF') [Cla78] has been the overwhelmingly used approach in logic pro-
gramming (see [AB94] for a recent survey): that is, infer ~A if every proof of A fails finitely. The operational
nature of this rule and its ultimately troublesome logical status is a serious threat to the logical frameworks’
endeavor. We will return on the topic of why NF is an absolutely inadequate way to address the issues of
negation in a such a framework in Section 1.4.

While the topic of negation has been pursued to the extreme in first-order logic programming (we shall
try a small review of closely related approaches in Section 1.3), the field is almost virgin as far as higher-
order logic and type theory is concerned: languages such as AProlog implement NF with the usual cut-fail
combination: a logical reconstruction for the first order fragment has been attempted, with somewhat
disappointing results, in Harland’s thesis [Har91b).

Though the impetus of this enterprise may seem at first sight mainly pragmatic, it should not be under-
rated. In short, we are trying to design a reasonable notion of negation, a basic building block of any logic
under severe computational constraints:

“The problem is difficult because it seeks a notion of negation which is simultaneously semanti-
cally elegant and computationally feasible: in both execution and mathematical/logical semantics
the extended language should cleanly extend the definite clause language” [JLLM91].

The reason why NF is so popular in the logic programming paradigm is that it essentially requires no
modification to the search structure of an logic programming interpreter. The real question is whether it
also satisfies the other aforementioned criteria. Nonetheless this is just a part of it:

“.. this notion [NF] is a basic logical notion, a notion of value to pure logic (as studied since
the Ancient Greeks) of equal importance and theoretical standing as notion like Possibility,
Deduction, Axiom and the like. The role of negation by failure in logic programming in only a
special case: one manifestation of its role in logic” [Gab91].

Our answer to this plea will be to show that, paradoxically, the best way to deal with negation in the
logic programming setting is to eliminate it through transformation.
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It is a basic fact of classical propositional logic that connectives are inter-definable; more precisely, a
sufficiently expressive set of sentential operators can provide, by definition, the missing ones, as an immediate
consequence of their truth-value semantics. It is therefore customary and economically convenient to assume
as primitive only this basis and define the others operators in terms of the former. In almost every definition
negation is taken as primitive, paired either with conjunction, disjunction or implication; even those more
succinct presentations based on a singleton connective as nand retain an implicit flavor of negation.

There is yet another way to address negation which is related to the transformational approach we are
interested in. This is known as negation normal form and it is used for example in Tait’s concise proof
of cut-elimination for classical logic. For every atomic predicate symbol p we also have a symbol denoting
the opposite, say p. Then, with the essential usage of double negation elimination and De Morgan’s laws,
negation is defined as follows:

-p

-p

—p
~(AAB) ¥ -AvV-B
~(AVB) £ -AA-B

def
def
def

I~

Thus, as far as the classical propositional structure is concerned, negation can be accomplished simply by
renaming. Consistency is then achieved by adding axioms that specifies that is it inconsistent to hold both
p and P, namely p & —=p an —-p < .

This is another way to look at the approach to negation that we shall investigate, that is the trans-
formational one, also known as intensional negation, initiated in [ST84] and developed in Pisa for Horn
logic [BMPT87, BMPT90, BLLM94]. Roughly, given a clause with occurrences of negated predicates, say
Q + G,~P,G’', where P is an already defined atom, the aim is to derive a positive predicate, say non_P,
which implements the complement of P, preserving operational equivalence; then, it is merely a question of
replacement, yielding the negation-less clause Q «+ G,non_P,G’. This has the neat effect that negation and
its problems are eliminated, i.e. we avoid any extension to the (meta) language. Technically, we can achieve
this by transforming a the body of the iff-completion [Cla78] of a Horn program into negation normal form
and then by negating atoms via complementing terms, a problem first addressed in [LM8T7] for first-order
terms. To mention the simplest example possible, suppose we have a procedure p that calls somewhere a
check for a number not to be even, where the latter is already defined:

p(X) « ... —even(X)...

even(0).
even(s(s(Y))) + even(Y).

The goal is to obtain a definition for p, where the negative occurrence of even(X) is replaced by a positive
call to its complement, say non_even(X). This involves the synthesis of the non_even predicate from its
positive definition:

p(X) « ...non_even(X)...

non_even(s(0)).
non_even(s(s(Y))) + non_even(Y).

Thus where is our contribution? The problem is that this does not carry immediately over to every
computational logics, where the notion of negation normal form may be in itself problematic. The issue
was not apparent in the existing literature because of the identification of logic programming with Horn
programming. For accident or necessity (though we now lean for the former) Horn logic imposed itself as the
format in logic programming. Because of its restricted syntax classical and intuitionistic provability coincide
in this fragment. This entails that classical equivalences preserve the intended operational semantics of the
source program. Thus negation normal forms do work here, as we explain in Chapter 5

Nevertheless, this approach does not scale immediately to more expressive languages. Once we go beyond
Horn logic, the intuitionistic (or ‘search-like’) interpretation becomes crucial to ensure the existence of what
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is commonly agreed as a reasonable interpreter for a logic programming language. Our endeavor can be
paraphrased as the search for a notion of negation normal form for a significantly fragment of higher-order
intuitionistic logic which is compatible with a logic programming interpretation.

It must be remarked that the issue of negation in constructivism is by no means new, but it has been
considered by many problematic. One sticky point lies in the Heyting semantics of —A, seen as a short for
A — 1; many have expressed doubts about the epistemological status of a construction which yields the
absurdum. A discussion can be found in Wansing’s monography [Wan93]. Already in its textbook [Hey56]
Heyting mentions Griss’ attempt to formalize a notion of negation-less mathematics. The most well-known
approach to marry a first-class notion of negation with constructivism is Nelson’s strong negation [Nel49).
As we will argue in Section 5.3, the interaction between strong negation and implication is inadequate to
support the operational interpretation of HHF we are interested in.

Additionally, elimination of negation does not scale immediately to logical frameworks such as HHF, for
two other reasons:

1. The simply-typed A-calculus is not closed under term complement.

2. There is an intrinsic tension between the Closed World Assumption (CWA) [Rei78], which is asso-
ciated with negation, and the Open World Assumption (OWA) typical of languages with embedded
implication.

Differently from the first-order case, the complement of a lambda term cannot, in general, be described by
a pattern, or even by a finite set of patterns. We can isolate one basic difficulty: a pattern such as Az. E z
for an existential variable E matches any term of appropriate type, while Az. E matches precisely those
terms Az. M where M does not depend on z. The complement then consists of all terms Az. M such that M
does depend on z. However, this set cannot be described by a pattern, or even a finite set of patterns. This
formulation of the problem suggests that we should consider a calculus with an internal notion of strictness
so that we can directly express that a term must depend on a given variable. We will therefore introduce a
strict A-calculus where term complement in the simply typed A-calculus can be embedded and performed.

The second issue is. rooted again in the fundamental difference between Horn and HHF formulae: as
well known, a Horn predicate definition can be seen as an inductive definition of the same predicate. The
minimelity condition of inductive definitions excludes anything else which is not allowed by the base and step
case(s). This corresponds in Horn logic to the existence of the least model and to the consistency of the CWA
and its finitary approximation, the completion of a program [Cla78]: every atom which is not provable from a
program is assumed to be false. Languages which provide embedded implication and universal quantification
are instead open-ended and thus require the OWA; in fact, dynamic assumptions may, at run-time, extend
the current signature and program in a totally unpredictable way. This makes it in general impossible to
talk about the closure of such a program. In the literature (reviewed in detail in Section 5.5) the issue has
been addressed in essentially three ways:

1. By enforcing a strict distinction between CWA and OWA predicates and applying NF only to the
former [Har91b], where the latter would require minimal negation, as in [Mom92].

2. By switching to a modal logic, which is able to take into account arbitrary extensions of the program as
possible worlds (see the completion construction in {GO98] for N-Prolog and [Bon94] for Hypothetical
Datalog). :

3. By embracing the idea of partiality in inductive definitions and using the rule of definitional reflection
to incorporate a proof-theoretical notion of closure analogous to the completion [SH93, MM97].

None of those approaches are satisfactory for our purposes: most of the predicates we want to negate
are open-ended; similarly, definitional reflection is not well-behaved (for example cut is not eliminable) for
that very class of programs we are interested in. Moreover, we need to express the negation of a predicate
in the same language where the predicate is formulated. Our solution is to restrict the set of programs
we deem deniable in a novel way, so as to enforce a Regular Word Assumption (RWA): we define a class of
programs whose dynamic assumptions extend the current database in a specific regular way. This constitutes
a reasonable middle ground between the CWA which allows no dynamic assumption but is amenable to
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negation and the OWA, where assumptions are totally unpredictable. The RWA is also a promising tool
in the study of the meta-logical frameworks [Sch00]. Technically, this regularity under dynamic extension
is calibrated so as to ensure that static and dynamic clauses never overlap. This property extends to the
negative program; in a sense, we maintain a distinction between static and dynamic information, but at a
much finer level, i.e. inside the definition of a predicate. The resulting fragment is very rich, as it captures
the essence of the usage of hypothetical and parametric judgments in a logical framework; namely, that they
are intrinsically combined to represent scoping constructs in the object language. This is why we contend
that this class of programs is adequate for the practice of logical frameworks.

1.2.1 What is Failure (in a Logical Framework)?

A minimal requirement for a negation operator ‘~’ is that if a set of assumption I' is consistent, it is
the case that ' H A iff not I' F —=A. It is a key issue how to interpret the notion of non-existence of a
proof. In the logic programming tradition this has been identified with the idea of finite failure: the logic
programming interpreter is run by querying a given program P with a goal G; the halting of the query
without a derivation is evidence enough to assert the negation of G. This idea actually traces back to
the same principle in the deductive database context, where the decision problem has a positive answer.
Indeed, in this setting, the Closed World Assumption is a most natural one, since, given the large number
of entries in a database, the only reasonable way to encode negation is by absence. The transfer of this idea
to full logic programming [She85)] has been not exactly worry-free, as the enormous literature on the subject
testifies. Luckily, our requirements are somewhat different from general logic programming; in fact, in a
logical framework, negation refers not to finite failure but to unprovability tout court, as we refrain from
negating programs whose negation is not recursively axiomatizable: the adequacy of the representation will
break down, since there would be functions which cannot be captured by the framework. We will therefore
deal only with terminating programs; this is why we identify negation with a complement operation. This
restriction, far from being an easy way out, gives us the additional burden to prove that termination is
preserved under every manipulation of programs.

It is clear that elimination of negation makes sense only when negation is stratified [ABW88], i.e. the
negative predicates ultimately refers (in the call graph) to a positive one. We will informally adopt the
generally accepted weaker notion of local stratification [AB94], when the positive dependency relies not
simply on predicate names, but on ground instantiations of literals. While there may be a place in logic
programming for non-stratified negation, as the emerging answer set programming paradigm [Lif99] testifies,
the latter seems to be circumscribed to solving mainly combinatorial problems. This does not seem to be a
concern for a logical framework.

1.2.2 Which Logical Framework?

In this dissertation we work with the pattern fragment of third-order HHF; thus our results apply to the
same fragment of Ly [Mil91], although every design decision has been influenced by the possibility to extend
it to the richer language of LF and to its implementation in Twelf. We comment on this in the conclusions
(Chapter 7). Twelf can be seen as a dependently-typed CLP-oriented enhancement of Ly. Both share
unification restricted to the pattern fragment, as well as the lack of predicate quantification. For convenience
reasons we take the liberty of decorating HHF clauses with labels that can be thought of as names. This
allows us to be more concise when applying program transformations. Even though they resemble the same
notation in Twelf, they lack any intrinsic meaning and will not be used as proof-terms.

Furthermore, we restrict ourselves to HHF without local variables. If we look in the usual logic program-
ming fashion at an implicational clause as a rule where the consequent is the ‘head’ and the antecedent the
‘body’, a local variable is an essentially existential one which occurs in the body but not in the head. This
restriction is customary in the literature on elimination of negation [ST84, MPRT90a]. For example the
following clause for typing application cannot be allowed, in this format.
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ofapp : VEi,Es:exp.VT1,T5:tp.
of (app Ey Ep) Ty
+ of E; (arrow Ty T3)
+—of Eo T.

The problem is that Horn clauses with local variables are already not closed under complementation; in
fact, elimination of negation will transform those into extensionally universally quantified variables. It is
a whole new topic to give an operational reading of universal quantification in this setting and to mingle
it with parametric judgments. It is our feeling that the issue of local variables during complementation
does not have a simple general solution. Approaches which embrace the extensional nature of universal
quantification brought in by the negation of existential quantifiers [BMPT90, ABT90] are not satisfactory
and robust enough to carry over to logical frameworks with intensional universal quantification, except when
dealing with finite domains.

While it is well-known that every computable function can be expressed by a Horn programs without
local variables, we cannot hide that this is a somewhat severe restriction. We offer some ideas on how to
partially overcome it in the conclusion (Subsection 7.1.4).

1.3 From Theorem Proving to Prolog

A legitimate question is to ask is why logic programming does not have a primitive notion of negation. To
understand that, we need to say something on how logic programming and Prolog developed. This enterprise
has a rather peculiar parabola; logic programming owes its (relative) success to the way it limits and directs
generic theorem proving; from then on, ironically, most of the effort has been to extend its boundaries
without falling back onto full clausal logic.

Automatic theorem proving, or at least the intuition (and the dream), can be dated back to Leibniz,
but become more of a reality in 1965 when Robinson introduced the resolution principle [Rob65]. Briefly, it
is a proof procedure which proceeds by contradiction, converting a sentence to clausal form and testing for
inconsistency with a version of Gentzen’s cut-rule augmented with unification. Yet, this approach has been
shown to be in general in-practical. A great deal of research developed after Robinson’s breakthrough aimed
at restricting the search space, while preserving completeness. This is not the place to give even a short
account of these studies: we just sketch those that led to the basis of Prolog as we know it; for references
and a chronology see [Apt90]. When building a refutation there are basically two sources of choice:

1. Deciding which clauses to pick as parent clauses.
2. Deciding which literals in those clauses are to be resolved away.

One way to support the first restriction is linear resolution, independently proposed by Loveland and Luckam
in 1970, which by fixing one goal at each step, never needs to resolve two input clauses together. As far as
the second point is concerned, we may decide, after Hill, Kowalski and Kuehner, to fix the literal to resolve
in the center clause (’linear resolution with selection function’). Though we have narrowed the search space
considerably, there is still a fair amount of choice, namely conjunctive choice in the side clauses, ancestors
tracking and factoring. The winning strategy is to restrict the syntax of the clauses themselves; the choice
fell on Horn clauses: definite clauses (that is clauses with exactly one positive literal) are interpreted as input
ones, while Horn clauses with empty positive part are taken as goals. Eventually we have arrived at pure
Prolog or SLD-resolution.

What has SLD-resolution to do with programming? The answer can be found in the so-called procedural
interpretation of Horn logic. Although the origins of Prolog are shrouded in mystery, it is known that in
1972 both Kowalski and Colmerauer came up with the idea that (a subset of) logic could be used as a
programming language. A definite clause A « By, By, ..., By, can be viewed as a definition of an Algol-like
procedure:
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procedure A

begin
call By
call B
call B,

end

Goal invocation corresponds to procedure invocation, and the ordering of the goals in the body of the invoked
clause corresponds to sequencing of statements. In logic programs data manipulation is entirely achieved
by means of unification, which encompasses parameter passing, multiple assignment, record allocation, data
construction and selection.

In spite of its limits, it can be shown that Horn logic has the same computational power of every other
programming language [Apt90]. Moreover, Horn logic has some nice model-theoretic properties, namely the
minimum model property; it is natural to consider the latter as the declarative meaning or the intended
interpretation of a program. Therefore it has been argued that we should be content with Horn logic, which
seems to be a complete and reasonably efficient computational logic. However, many have been dissatisfied
with the difficulty to express even the easiest logical problems in a language that lacks (explicit) disjunction
and negation. We share this complaint up to a certain point. We maintain the logic programming works as
far as the logical and the algorithmic parts do not differ too much, and that Kowalski’s motto “Programs
= Logic + Control” has shown its intrinsic limitations. Yet, we strongly share the idea that especially from
a programming point of view it would be advisable to have the possibility of performing negative queries
and overall to have a negation operator in the body of clauses instead of simulating it with extra-logical
constructions, which make programs less understandable and declarative. It is not a question of expressive
power, it is a matter of style and convenience.

There are three ways, in order of increasing complexity, to add negation to Horn logic:

e Negative atomic queries.
e Negative literals in clauses bodies.
e Negative heads.

It is not possible to try to review all the proposed extensions; historically much of the attention has been
concentrated on incorporating NF'; from that, most of first-order expressivity is recovered [LT84].

1.4 Negation-as-Failure

Since negative information is independent from definite programs, a specialized inference rule must be
invoked: negation as failure (NF), which in logic programming, originated from the confluence of two
quite different trends of research: the refinements of resolution based automatic proof procedures and the
relational approach to databases. For a nice introduction see [She88, AB94]. The idea of a proof under the
NF rule is a natural one: suppose you have a set of axioms and some kind of inference mechanism which
produces a recursively enumerable set of theorems, and that you are asked to verify the truth of a negative
conjecture ~C under NF; then you try to prove C from your theory; if you succeed, then -~C does not hold,
while if you realize (in a finite time) that C is not provable, then you are entitled to assert that -~C holds.
Its basic idea is to state that a goal is false if we are able to prove that it cannot be proved by the program.
Actually, NF is more a computational than a logical notion; we answer ‘no’ to a goal because our attempt
to say ‘yes’ failed, so we say ‘no’ because we cannot say ‘yes;. Differently from other kind of negation, NF
“...does not follow from some constructive knowledge, but from lack of knowledge” ([Gab91] pp. 8). That
motivates its intrinsic non-monotonicity: in fact, in dynamic databases every enlargement may cause the
meaning of failure to change and so turn success into failure.
In logic programming, NF works this way:
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” ... The basic idea is to use SLD-resolution augmented by the NF rule. When a positive literal
is selected, we use essentially SLD-derivation to derive a new goal. However, when a ground
negative literal is selected, the goal answering process is entered recursively in order to try to
establish the negative subgoal ...Having selected ground negative literal ~A in some goal, an
attempt is made to construct a finitely failed SLDNF tree with root < A before continuing with
the remainder of the computation. If such a tree is constructed, then the subgoal —A succeeds.
Otherwise, if a SLDNF-refutation is found for —A, then the subgoal fails ...” ([Llo93] p. 87).

The operational nature of this rule motivates the lack of a unique semantics and some of its related trou-
blesome features: to begin with, possible unsoundness: without run-time checks on the substitution returned
by a negative open query, the final answer substitution may not be a logical consequence of the program.
This is the so-called “floundering” phenomenon, the undecidable question of whether the computation will
reach a negative open query and abort. Soundness is preserved only for ground queries; the flip side of the
medal is that now negation is not a first-class connective, but just a test that cannot return substitutions.
We review in Section 1.5.1 how and with what computational cost this can be avoided. And of course, NF'
is'in general incomplete in general logic programming.

All of the above makes NF a suspicious candidate for a negation operator in any logic programming
language, but the situation is even worse in logical frameworks. Even if we manage to isolate a well-behaved
logical fragment, such as acyclic normal programs [AB90], allowing NF in a logical framework carries some
~ additional problems. First, the meta-theory becomes really unwieldy, as both provability and unprovability
must now be taken into account. The two systems would be interlinked by rules such as:

TY/F L
& T+F

-~ - R+
TF-F T/ -F

where I/ denotes a proof system for finite failure. In a type-theoretic logical frameworkthis issue is further
exacerbated by the need to deliver evidence of what a proof of a certain judgment is. The most popular way,
since the Automath project [dB80], is to to see derivations as lambda terms inhabiting judgments seen as
types. Although it is in principle possible to associate proof-terms to a derivation by negation-as-failure -
this is implicit in the denial proof system that we present in Chapter 6, Figure 6.1 and 6.2 — the existence of
(unique) canonical forms is in general impossible to achieve; and this is pretty much a death sentence for NF.
In fact, in frameworks with hypothetical judgments, as recognized first by Gabbay [Gab85], the unrestricted
combination of NF' and embedded implication is particularly problematic, since it leads to the failure of
basic logic principles such as cut-elimination. We discuss this issue in details in Section 5.5.

At the user level, the presence of NF in a logical framework would make adequacy theorems more difficult
to establish, again because both provability and unprovability now need to be considered.

In summary the adoption of NF in a logical framework seems to be a very risky, if not hopeless road,
considering its fragility already in the very simple setting of Horn clauses.

1.5 Extending Horn Logic

As previously mentioned, once Horn logic was isolated as the core of a programming language, a fairly
disorderly race was off to get more mileage out of Prolog. To sum up, we can isolate several (slightly
overlapping) positions:

o The “tories”: for model-theoretic reasons, Horn logic is the best possible world, see the manifest “Why
Horn logic matters in computer science” [Mak87].

e The “realists”, guided by Apt: logic programming is Horn logic with NF : what’s left to do is logicize
the impure features of Prolog.

e The “Making Prolog more expressive” people: divided in two main intertwined sub-tribes: the “lo-
gicians”, which claim that programming in Horn logic is like living with one hand tied behind your
back, and the “compilers” (see Sato and Tamaki. [TS84]: those come from the specification approach
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and look at Horn logic as a implementation language which is the target of a long and tiresome travel
through derivation and/or transformations from first-order logic. For the logicians, it is a must to con-
quer any piece of land outside Horn logic, say by adding connectives [PG86], pre-compilation [LT84],
change of interpreters (say connection graphs [GR87]) or, more reasonably, switching from classical
logic to fragments in the intuitionistic galaxy, reviewed in Section 5.5.

o Finally, there is the proof-theoretic approach of uniform proofs: new connectives are allowed only if
we can ascribe a clear meaning in term of search and provide a way of endowing logic programming
in a purely logical way with features such as modules, data abstraction and scoping typical of other
mature languages.

We now concentrate on how recent research has tried to address some of the problems connected with
NF.

1.5.1 Constructive Negation

Constructive Negation is an attempt to devise methods capable to provide logically justified answers to
non-ground negative queries, in analogy with the witnessing property of constructive logics. Formally, for
a suitable derivability relation, this property ensures that from F Jz—p(z) we can infer the existence of a
term t such that + —p(t). We can roughly distinguish two approaches:

i. Program Transformation: [ST84], [FRTW88], [BMPT90].

ii. Negation by Constraints: [Wal87] for Datalog programs, [Cha88] [Cha89] and extended to CLP in
[Stu95]; Fail Substitutions: [She89] [MN89].

Historically, the original attempt to deal with the issue was simply to try avoiding the floundering
phenomenon: given that the latter is in general undecidable, one possibility is to try to make sure that when
a negative literal is called it has already been grounded: there are basically three possibilities:

1. Satisfy the syntactic, though very restrictive, conditions on allowed computations [She85], which es-
sentially reduces evaluation to ground evaluation.

2. Try to achieve grounding by delaying as in [MJNU-Prolog [Nai86] or Sicstus [AAB*95], where a goal
may be declared to be “frozen” and is evaluated only when it reaches a sufficient degree of instantiation.
This is obviously only a partial solution, since at run-time there is no guarantee to eventually ground
the problematic query. A more complex and historically less successful alternative is offered by the
computation rules of IC-Prolog, which allow the computation of negative open queries if their positive
counterpart does not bound any variable (see [Nai86], for a comprehensive analysis and references).

3. Covering the open negative query with a generator of values for the relevant variables. This is further
detailed next.

Static Approaches

If we are dealing with Datalog programs, i.e. with finite Herbrand Universe (Up), the naive approach would
be to instantiate all the rules with potentially troublesome goal with terms from Up [ABW88], say through
propagation in every negative literal in the program. This is clearly infeasible, since it may result in an
intractable numbers of rules, especially in an untyped setting.

A sophistication of this idea can be found in [FRTW88]: the proposal is to automatically infer a ‘type’
for the problematic variables and transform the original program into one where grounding is ensured by
coverage from those types. Then useless answers originating from general instantiation would be excluded
by the typing discipline. Although it can be shown that the new program is equivalent to the old one, this
cannot be extended to full Prolog: function symbols make the type infinite and non-ground facts would
undermine the instantiation capability of the type.

Finally, the transformation approach falls in this category and is detailed in Chapter 5.
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Dynamic Approaches

Chan [Cha88] is acknowledged to be the inventor of the term ’constructive’ negation in this area; his approach
can be roughly characterized as mixing NF with a constraints-solving attitude. In essence it consists in
evaluating a negative goal by executing its positive version and by negating the answer obtained. As in the
CLP family of languages, unification and disunification are kept explicit and returned as solutions. Of course,
we need to keep the (in)equalities in normal form and there are some obvious problems when dealing with
computations that have infinite answers; those are addressed in a following paper ([Cha89]), by quantifying
over the answer substitutions. No proof of completeness is offered. We can offer the following rational
reconstruction: the key observation is that if G is a goal and we consider the answer substitutions 64, ..., 8, as
equations, G <> 3(0; V...V#6,) is a logical consequence of the completed database. Therefore the constructive
negation rule is simply -G 4 —V(6; V...V #8,), where the right-hand side can be simplified by disunification.
For instance given the query not{even(X)), its positive version yields the answer X =0V 3Y : X = s5(s(Y)),
whose negation is X # 0AVY : X # s(s(Y)): its solved form is hence X = s(0), which we can regard as a
more informative refinement of the answer constructive negation produces.

A generalization to constraint logic programming over arbitrary structures is given in [Stu95]; it turns
out to be sound and complete w.r.t. the three-valued models of the completion. Other development of
constructive negation are addressed in [Fag97].

(E)SLDNF — S ([She89]) The finite failure case in the definition of SLDN F-resolution is modified as
follows: a goal (', ~A) has a descendent T, if there is a finitely failed-tree for 6 A, where dom(6) € FV (A).
So NF can instantiate under success, i.e. negative goals may directly return substitutions: given P and G
the aim is to look for a (fail) substitution 6 such that P I G has a finitely failed tree; then by the soundness
of the NF rule V6-G is a consequence of comp(P) and thus 8 is an answer substitution for the query -G.
This seems very costly, since it entails enumerating (guessing) every fail substitution. I am not aware of any
implementation of this proposal.

This is refined in [MIN89], where it is shown how to avoid to generate all possible substitutions in lieu
of a maximal general fail substitution. Moreover, the improvement w.r.t. Chan’s work lies in the feature of
always including some positive bindings for the variable in the negated goal. If the SLD-tree is infinite, the
method enumerates the set of fail substitutions; this corresponds to the fact that in general negative queries
cannot be represented by finite positive information alone (connected to [LM87]).

1.5.2 Non-Failure Driven Negation

During the years ways of incorporating other more logical forms of negation than NF have appeared. Since
most of the time this gives back full non clausal-logic, most of them are cataloged as automated theorem
provers. In all these accounts, negative information has to be provided explicitly and specific rules are offered
to deal with that. Sometimes it is possible to mix “open world” and “closed world” predicates safely. For a
more detailed account and bibliography, let me refer to [Mom92].

e N(Q)Prolog [GR84], a complete implementation of positive intuitionisfic logic. By defining disjunction
classically and allowing a restart rule (see nH Prolog next), Gabbay shows it to be complete for full
classical logic as well. '

e Negation as Inconsistency ([GS86]). Here we evaluate a query against an ordered pair (P, N), where P
is a Horn program and N a set of queries that are required not to succeed; this is logically equivalent
to adding to the program the negation of all the members of IV, and permits importing negative facts
and rules. Both systems have a very awkward first-order version.

e Stickel’s PTTP, supplements SLD-resolution with the model elimination rule. This entails keeping
track of the ancestors of the goal, loosing one of the key feature of Prolog, namely input resolution.

e Loveland’s nH Prolog [RL92] incorporates case analysis in SLD-resolution, by demanding the invo-
cation of a restart rule for every disjunctive head, until the stack of the former. Without requiring
contrapositives (as in PTTP), it simulates case analysis with different runs of essentially the Pro-
log engine. Unfortunately naive nH-Prolog is incomplete and the new versions (Progressive nH and
Inheritance nH) have a less natural and convincing description.
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e Another extension goes under the name of disjunctive logic programming (see [LMR92)] and references
therein). It aims to deal with full clausal logic by generalizing Horn clauses to disjunctive heads.

1.5.3 Proof-Theoretic Approaches to Negation and NF

In the 90’s there has been an attempt to tie LP to proof-theory, where it belongs: and this has brought new
insights, particularly on NF.

The first step is to view Horn clauses positively as rules and goals as existentially closed conjunctions
of atoms to be proved by the former. Historically this can probably be dated back to Gabbay and Reyle
[GR84]. It is customary [HSH90] to distinguish among two approaches:

1. Clauses as axioms (programs as theories) and some form of Gentzen sequent calculus to infer goals,
i.e. uniform proofs systems.

2. Clauses as rules [HSH90]: Horn (and beyond) programs should be seen as set of inference rules for the
derivation of (not necessarily ground) atoms.

This has the following relation with negation:

1. Minimal, intuitionistic and classical negation can be superimposed over uniform proofs [Mil89c], [Har91a],
[Mom92]: Minimal negation, being camouflaged implication, is executed through the AUGMENT and
backchain operations; the evaluation of —D consists in the assumption of D and in the attempt to prove
1 from the enlarged theory. The Duns Scoto Law and Reductio ad Absurdum for atoms formalize the
latter, preserving the feature of abstract logic programming languages [MNPS91].

2. GCLA [MAK?Y]] is based on the rule-based definitional approach to logic programming: it has in-
tuitionistic negation built-in, applying the definiens operator to the left-hand side of a sequent. A
discussion can be found in Section 5.5.4.

Stark [Sta92] has given a sequent calculus reconstruction of NF using Clark’s equality and freeness axioms,
negation (switch) rule and cut rules. Much more is however contained in Stark’s thesis and subsequent
research, although not directly applicable to our goals; to quote a few, he shows that a sequent is provable
in this calculus iff it is true in all 3-valued model of the completion. Furthermore a completeness result is
proved w.r.t SLDN F-resolution for program satisfying the cut-property.

1.5.4 Outline

This dissertation is organized in two main parts which address:
e The relative complement problem for higher-order patterns.
¢ Clause complementation for a fragment of third-order Hereditary Harrop formulae.

We start in Chapter 2 by introducing the relative complement problem; we review the existing solutions
to the first-order case in the literature, namely a variant of Lassez & Marriot’s original uncover algorithm
[LM87] (Section 2.1) and disunification [Com91] (Section 2.2). We then discuss in Section 2.4 the problems
connected to extending those idea to the higher-order case, where we notice the fundamental difference
between fully and pertially applied terms. For the latter fragment, the simply-typed X calculus is not closed
under term complement. We remedy this by introducing the strict A-calculus in Chapter 3. We develop
the system and mention the existence of canonical forms. Once we have a calculus strong enough to deal
with partially applied terms, Section 4.1 introduces a restriction of the language (“simple terms”) for which
complementation is possible. The algorithm for negation is presented in Section 4.2; in Section 4.3 we give
a unification algorithm for the same fragment. This completes our solution to the relative complement
problems for higher-order patterns. We conclude this chapter in Section 4.4 by showing how to organize
finite sets of simple terms into a boolean algebra. We end up this part of the dissertation reviewing related
work on strictness (Section 3.3).
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Chapter 5 sets the stage for clause complementation. First, in Section 5.1, we offer a reconstruction of
the transformational approach to negation in the Horn case. Then in Section 5.2 and 5.3 we give an informal
view of the complement algorithm for HHF and of the restrictions it requires by means of examples. In
Section 5.4 we try to motivate the pragmatic adequacy of the fragment of HHF we deal with, while Section
5.5 reviews the state of the art in NF' and intuitionistic provability.

Chapter 6 is the heart of the thesis; we first introduce the source language and its uniform proofs system
in Section 6.1. We then establish the fundamental notion of context schema (Section 6.2). This allows to
enforce the Regular World Assumption (RWA), on which clause complementation is built. After formalizing
the restriction to terminating programs in Section 6.3, we present the clause complementation algorithm and
the related notion of augmentation (Section 6.5 and 6.6). We then prove the main theorem (Section 6.7 and
6.8). Finally, Section 6.9 discusses how to give an operational semantics to our language.

We conclude the dissertation in Chapter 7 by discussing first how to lift some of the current restrictions
(Section 7.1); then we address possible extensions, implementation issues and further future work (Section
7.2,7.3 and 7.4).

1.6 Contributions and Technical Acknowledgments

The original contribution of the thesis are:
e A relative complement algorithm for higher-order patterns internalized into a strict type theory.
e A complement algorithm for a useful class of third-order hereditary Harrop formulae.

We contend that our approach is the first one to give a realistic analysis of negation in logical frameworks
with an emphasis on the development of a practical tool to incorporate this operator in existing languages.

This work has benefited enormously from the large ensemble of research collected in the Elf and offspring
projects: not only form the existence of this language and environment, but also from specific contributions
which we have used (in a somewhat simplified setting) in this thesis. Let me mention only the most recent
ones: schema contexts (Schiirmann [Sch00}), linear unification (Cervesato and Pfenning [CP96]), subordina-
tion (Virga [Vir99]), mode and termination analysis (Rohwedder and Pfenning [RP96]).

This research has been financially supported for seven semesters by the Department of Philosophy at
CMU and by a one-year scholarship from “Consiglio Nazionale delle Ricerche”, Italy.




Chapter 2

The Relative Complement Problem

An open term ¢ in a given signature can be seen as the intensional representation of the set of its ground
instances, say ||t||. According to this interpretation, the complement of t is the set of ground terms which are
not instances of ¢, i.e. are in the set-theoretic complement of ||¢]|. It is natural to generalize this to the notion
of relative complement; this corresponds to computing a suitable representation of all the ground instances
of a given (finite) set of terms which are not instances of another given one, in symbols:

Heesooontall = llua, - oo umll

where dots represent (set theoretic) union'. Nore properly:

n
= Il
i=1

Let FV(ty,...,t,) = ¥ disjoint from FV(uy,...,um) = §. Then the relative complement problem can
be also expressed by the following (restricted) form of equational problem [Com91], where the z;'s are free
variables.

[lt1, .- tnl
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=1 i=1

Example 2.1 Consider the signature containing the usual declarations for 0,s,+. The following rules define
integer addition modulo 2.

s(s(0)) — O
y+0 — gy
0O+y — vy
y+y — 0

The following relative complement problem expresses the question of sufficient completeness (in this case
yielding a positive answer) of the rewrite rules:

llz1 + 22|l — [15(s(0)),0 + v,y + 0,y + ]|
which corresponds to:
ArizVy: (z=21+ 2) A (2 #sSONAZZy+0)A(z#0+y)A(z#£y+y)

Then, since a variable stands for the universe of discourse, a complement problem is representable merely
by:
llzl] = llw, . . . umli

1 Another equivalent notation found in the literature is t; V --- V ¢, \u1 V- Vu, [LM87], or a mixture of the two.
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or a simpler (3-degenerate) equational problem:

m

Vg}':/\z#ui

i=1

Now we turn to review solutions to the relative complement problem in first-order languages.

2.1 The Not Algorithm

We start with the ‘Not’ algorithm for first-order terms that specializes the prototypical uncover algorithm
proposed in [LM87] as a first attempt to solve the the problem and is at the heart of Barbuti et al.’s approach
(BMPT90]. We present it in a many-sorted framework, differently from the uni-sorted original version. We
call (in this chapter) a term linear if it does not contain repeated occurrences of a free variable.

Definition 2.2 Consider a many-sorted signature ¥ and a linear term t of type 7. We define Not(t) by
structural induction, where we suppose that t; has sort 7; and the z’s are new free variables of appropriate
typing:
Not(z : 7) =0
Not(f(tn):7) =
{9(Zm):7|9€%,9% fig:Tm = T}U
{f(z1,...,2i-1,8,2i41,...,2n) : T | $ € Not(t;),1 < in}

The uni-sorted version of this function tends to produce a lot of irrelevant outcomes. For example,
Not(cons(s(z),nil)) does not yield only the desired {nil,cons(0,nil), cons(y,cons(z,zs))} in the informal
signature of lists of numerals but also {0, s(z),...}. On the other hand, fixing

% = {0: nat,nil : nlist, s : nat = nat, cons : nat * nlist - nlist} ‘

we get the desired result. This problem may tend to increase dramatically with the size of the signature. It
can be argued that the notion of complementation itself without an underlying type discipline makes little
sense, not only from a complexity standpoint, but also in intellectual terms. Moreover, more refined type
theories, as dependent types and/or sub-typing will further constrain the result of the evaluation of Not.

A complement operator must satisfy the following desiderata:
1. Exclusivity: it is not the case that s is both a ground instance of ¢ and of Not(¢).
2. Exhaustivity: s is a ground instance of ¢ or s is a ground instance of Not(t).

That is, the Not algorithm ought to behave as a the complement operation on sets of ground terms.
This cannot be achieved in all generality. In other words, intensional representations of terms are not closed
under complementation. One canonical example is as follows:

Example 2.3 Consider the signature {a : 1, f : (i % i) — i}: intuitively the complement of f(y,y) should be:
lzll = lf .l = {a}U{f(z,2)|z+# 2z}

Instead, the Not algorithm would incorrectly yield:

Not(f_(y,y)) = {a}

In fact, Lassez & Marriot [LM87] have been the first to point out that this complement algorithm is correct
only for linear terms: complement of non-linear ones do not have a straightforward finite representation.
More sophisticated representation, such as constrained terms [Com88] have been investigated, but are not
suitable to our applications.

Moreover, as well known, the restriction to linearity seems to be almost immaterial in logic programming
thanks to the idea of left-linearization introduced by Plaisted and used first by Stickel [Sti88] to avoid
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unnecessary occur checks testing. It simply consists of a source-to-source transformation which replaces
repeated occurrence of the same variable in a clause head with new variables which are then constrained in
the body by a new predicate, say eg, whose definition is simply eq(z, z); unification will then provide the
other properties of equality. For example, continuing Example 2.3, a clause such as Yy .p(y,y) + G would
be replaced by Vz;.Vzy.p(21,22) « eq(z1,22) AG. As a matter of fact, this approach is less innocent than
it looks at first sight, since it opens the road to a CLP attitude; moreover, eq as a predicate is not linear
in itself and required an ad hoc treatment in the transformational approach to negation [BMPT90]. Miller
[Mil89a] has shown how to automatically infer the equality predicate (the copy clause, in his terminology
) for any type. However, for any order higher than the first, this clauses are not Horn and their negation
is itself problematic. One of the result in this dissertation is to apply elimination of negation to predicates
such as copy.

Once we have a way to solve complement problems, it is easy to pair it to intersection, seen as unification
[Plo71], to have a solution to relative complements as well, i.e.
ef
litall = I, - umll - E - [Itll N[N0t (w0 .. O [[Not(ugm)|
Another more general approach is possible. As we have seen in the beginning, it is possible to express the

(relative) complement problem on terms as an equational problem. This is the basis to solve complement
problems with disunification, as we sketch next.

2.2 Disunification

Disunification is devoted to solving arbitrary first order formulae whose only predicate symbol is equality, call
them equational formulae. The definition of what a solution is differs on the application at hand. We may be
interested only in the overall validity or in the possible assignments that make the formula valid. As we have
seen, complement problems can be seen as systems of dis-equations with universally quantified variables.
Thus a disunification algorithm (over first-order terms) will solve these problems, possibly providing values
for free variables.

From an historic perspective this field became defined when it was realized by Martelli & Montanari
[MM82], if not by Herbrand (see the Appendix in [Sny91]) that first-order unification can be seen as a set of
transformations on sets of equations. On the other hand the work of Mal’cev [Mal71] on the decidability and
the possibility to give complete axiomatization of the theory of equational algebras qualifies as an ancestor.
The definition of Prolog-II introduced first-class dis-equations. Indeed Colmerauer [Col84] showed them to
have solutions in the algebra of rational trees. Next, Lassez & Marriot [LM87] proposed the seminal (although
awkward) uncover algorithm for computing relative complements. Kirchner and Lescanne first unified those
previous papers in the framework of equational problems and proposed a set of transformational rules,
though without a completeness proof [KL87]. Maher introduced the unification community to Mal’cev’s
results [Mah88]. Comon and Lescanne were the first one to present an adequate set of rules [Com88, CL89]
and the former surveyed the field [Com91].

How to go on to derive a disunification procedure can vary from the syntax and semantics we are concerned
'with, but nevertheless it entails the following steps:

e Provide a set of axioms 7 that hold in the model we consider.

e Design a set of rules R for the transformation of equational formulae that can be proven correct w.r.t.

T.

e Design a control C on R such that the application of rules satisfying C terminates: irreducible formulae
are in solved form and have the same set of solutions as the original problem.

e If arbitrary formulae are allowed and solved forms are trivially decidable, this entails the decidability
and completeness of 7.

The simplest example is unification of finite (first-order) terms:
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R : w=tA Pluw] — w=tA[t/w]P

M T w=tAw#u 3 w=tAt#u

UE, : Vi,y.PAy#t — L

CIMT) : f(ta)#9Gm) +— T

ClR(F) : f(ta) =9(Gm) +— L

Dec, 2 f(t) # f@m) ‘\_/1 t; # u

Dec; : f(ta) = f(@) +— 7\ t=u;

E . V§.P — 'V G2V P Aw = (@)
fexs

In rule R w ¢ Var(t), in E, P contains a (dis)equation with LHS w and RHS u, where the latter is not a
variable and contains a universally quantified variable.

Figure 2.1: Some disunification rules

e T is Clark’s free equality theory [ClaT78§].

e R are, say, the Martelli-Montanari rules; correctness corresponds to the preservation of solutions under
rule application.

e Solved forms yield idempotent substitutions and control restricts the application of variable elimination.
Completeness (of the theory) is established for example as in [Mah88].

The disunification rewrite rules are divided into three big classes:

¢ Equality rules, i.e. rules which are correct for any equational algebra
¢ Rules for finite trees over any signature

* Rules for finite trees over a finite signature.

We will not present the complete set of rules with logical provisos and control. We just mention that
the first group contains Replacement, Universal Quantifier Elimination, Existential Quantifier Elimination
and Elimination of Disjunctions. The second batch contain Clash, Decomposition, Occur check. The third
section would contain rules which are sensitive to the cardinality of the signature. Here we mention only the
Explosion rule (E), which is motivated by the domain closure axiom (DCA) [MMP88]. We list in Figure 2.1
the rules relevant to the following example in their barest form, i.e. with only soundness and no termination
condition:

We now give an example of disunification on the numerals signature, which is required in the synthesis
of the odd program (see Figure 5.1). It consists in solving:

Vy:z#O0Az#s(s(y)) (2.1)

The intuitive solution of (2.1) is z = s(0). We will use the rules in Figure 2.1 and gloss over normalization
steps as well as elimination of trivial (dis)equations. Branches stemming from the explosion rule are numbered
and pursued separately (keeping in mind that they form a disjunction, i.e. a finitely branching tree from
a search standpoint). R(z) denote application of the rule R on variable z. The computation is traced in
Figure 2.2.

Note that disunification nicely overcomes the difference between linear and non-linear terms with different
notions of solved forms, namely unification solved form versus solved form with dis-equations [Com91].
This may be interpreted as evidence of the opportunity of rephrasing unrestricted relative complements
as disunification problems. We, on the other hand, maintain that this approach is unnecessarily general
for this purpose. Implementing disunification entails managing the non-deterministic application of a few
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\Vy:2#0Az #s(s(w)) |

2 E(2)(1,2)
(DVy:2#0Az2#s(s(y)Az=0
= Mi(2)
Vy:0Z£0A0#s(s(y))Az=0
= CIn(F)
(2) FzVy : z £ 0N z # 3(s(y)) Az = s{x)
M (2)

JzVy : s(z) # 0A s(z) # s(s(y)) Az = s(x)

" Dec,CIK(T)
JzVy : z # s{y) A z = s(x)

Y E(x)(2.1,2.2)
(21) JaVy:z #s(y)Az=s(z)Az=0
= M1(2)
JaVy :0#£ s(y) Az=5(0)Az=0
r—)E,lh(T) z = s(0)
(2.2) 3zyzVy :x #s(y) ANz = s(z) Az = s(x),
H*Ml(z),Decl

F_);‘JEl(y)

JzyaVy : 21 #FyAz=s(z) Az =s(z)

Figure 2.2: Computation of Yy : 2z # 0 A z # s(s(y))

dozen rules which eventually turns a given problem into a solved form. Though a reduction to a significant
subset of the disunification rules as the one depicted in Figure 2.1 is likely to be attainable for complement
problems, control is a major problem. Moreover the higher-order case results in additional complications,
such as restrictions on the occurrences of bound variables, which fall outside an otherwise clean framework.
As we show in this dissertation, this must not necessarily be the case. We believe that our techniques for
the higher-order case can also be applied to analyze disunification, although we have not investigated this
possibility at present.

2.3 Other Applications

Complement problems and elimination of negation are not restricted to logic programming, but have some
other relevant application in theoretical computer science. Let me refer to [JLLM91] and [Com91] for issues
impossible to detail here and for complete references.

In fact, complement problems and variants of the uncover algorithm [LM87] as a first attempt to solve
the former, have been studied and tentatively applied in several ways:

¢ In functional programming, to determine, modulo pattern matching, whether the program clauses
describing a function are exhaustive and disjoint, even further to produce a non-ambiguous set of
patterns. Moreover, it is possible to take advantage of the given sequential application of the rules to
provide an improved compiled code. Indeed, if, say, the second rule applies, it means the first one does
not: hence the terms reducible by the second rule are in the complement of the LHS of the first.

e The connection of complementation to the notion of ground reducibility in term rewriting systems makes
it a candidate as a checker for sufficient completeness [GH78] of an algebraic (equational) specification.
If the latter fails to be complete, the transformation rules my lead to recover the missing cases—hence
the motto in [Thi84]:

“Stop losing sleep over incomplete specifications”
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Here we are looking for counter-examples: if a function is not sufficiently complete, there is a term,
built from the constructors in the signature, which is different from any LHS, thus irreducible (see
Example 2.1).

o In term rewriting systems describing infinite transition systems, the complement of a LHS returns
the states from which no transition is achievable, providing thusly a tool for the temporal analysis of
communicating processes.

¢ In machine learning, a concept can be captured by a term with some (finite) exceptions: the com-
putation of this structure, which is a relative complement, coincides with the search for an explicit
representation of the cited concept.

o Finally, applications to inductive theorem proving under the slogan induction-less induction or proof
by consistency [Com98] are under scrutiny. This is connected to the idea of the so-called inductive
reducibility property.

We now switch gears and discuss the extension of the relative complement problem to the higher-order
case; as usual, we restrict ourselves to a specific class of A-terms.

2.4 Complementing Higher-Order Patterns

In most functional and logic programming languages the notion of a pattern, together with the requisite
algorithms for matching or unification, play an important role in the operational semantics. And, of course,
patterns form the left-hand sides of rewrite rules and are thus critical to the study of rewrite systems. Con-
sequently, analysis of the structure of patterns is an important task in the implementation of programming
languages and more abstract studies of rewriting systems and their properties.

Perhaps the most fundamental problems are matching and unification, but other questions such as gener-
alization also arise frequently. Here, we are concerned with the problem of pattern complement in a setting
were patterns may contain binding operators, so-called higher-order patterns [Mil91, Nip91]. A term possibly
containing some existential variables is called a pattern if each occurrence of an existential variable has the
form E z; ...z,, where the arguments z; are distinct occurrences of free or bound variables (but not existen-
tial variables). Higher-order patterns have found applications in logic programming [Mil91, Pfe91a, MP93],
logical frameworks [DPS97], term rewriting [Nip93], and functional logic programming [HP96]. Higher-order
patterns inherit many pleasant properties from the first-order case. In particular, most general unifiers [Mil91]
and least general generalizations [Pfe91b)] exist, even for complex type theories.

In this section we discuss some of the preliminary issues towards a generalization to the complement
algorithm to higher-order patterns. We assume the following:

e All terms are linear, i.e. existential variables occurs only once.

e Types do not contain occurrences of the primitive type o. We thus complement only terms with no
inner logical structure.

The main difference w.r.t. the first-order case is twofold: first, the second-order (relative) complement
problem is not semi-decidable, but higher-order disunification on higher-order patterns is decidable [Lug94].
Secondly, as we will see, the class of patterns is not closed under complement, although a special subclass
is. We call a canonical pattern I' - M : A fully applied if each occurrence of an existential variable E under
binders y1,...,ym is applied to some permutation of the variables in I' and y1,...,ym. This is formally
defined in Figure 2.3. Fully applied patterns play an important role in functional logic programming and
rewriting [HP96] because any fully applied existential variable I' - E ...z, denotes all canonical terms
with free variables from I'. It is this property which makes complementation particularly simple. In fact, the
main difference with the first-order case is that we need to carefully keep track of bound variables: those are
collected in a context I', so that the complement of a rigid term is taken w.r.t. both the signature and the
- current context. In the case the term is not fully applied, the complement has to take into account whether
some of the variables mentioned in a lambda binder do appear in the matrix; we discuss this in the next
Section 2.5. We first analyze the simpler case.
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¥n = dom(T') Iz:Atg M fa.
—— — FaPat FalLam
'ty E 3, fa. Tkt Az:A. M fa.
helTUulx I'Fg Ny fa. ---T'+x N, fa.
— Fahpp
I'kts h N, fa.

Figure 2.3: M is a fully applied pattern: I' s M f.a.

The language of the simply-typed A-calculus is as follows, where we use a for atomic types (different from
the type of proposition o), ¢ for term-level constants, and z for term-level variables, while k will stand for a
constant or a variable.

Simple Types A 1= a| A = Ay
Terms M := c|z|Az:A. M| M, M,
Signatures ¥ u= .| X atype| T, c:4
Contezts T == -|I,z:A

We require that signatures and contexts declare each constant or variable at most once so that, for
example, when we write I',z:4, = may not already be declared in I". Furthermore, we identify contexts
which differ only in their order, in other words, contexts are treated as sets of declarations for distinct
variables. We promote “,” to denote disjoint set union. As usual we identify terms which differ only in the
names of their bound variables. We restrict attention to well-typed terms, omitting the standard typing
rules.

In applications such a logic programming or logical frameworks, A-abstraction is used to represent binding
operators in some object language. In such a situation the most normal forms are long Bn-normal forms
(which we call canonical forms), since the canonical forms are almost always the terms in bijective corre-
spondence with the objects we are trying to represent. Every well-typed term in the simply-typed A-calculus
has a unique canonical form—a property which persists in the strict A-calculus introduced in Chapter 3. See
that chapter for further discussion and an inductive definition of canonical forms.

We denote existential variables of type A (also called logical variables, meta-variables, or pattern vari-
ables) by E4, although we mostly omit the type A when it is clear from the context. We think of existential
variables as syntactically distinct from bound variables or free variables declared in a context.

Semantically, an existential variable E4 stands for all canonical terms M of type A in the empty context
with respect to a given signature. We extend this to arbitrary well-typed terms in the usual way, and write
||M || for the set of canonical ground instances of a term M possibly containing existential variables (formally
defined in Figure 4.2). In this setting, unification of two patterns corresponds to an intersection of the set
of terms they denote [Mil91, Pfe91b]. This set is always either empty, or can be expressed again as the set
of instances of a single pattern. That is, patterns admit most general unifiers.

We now introduce the generalization of the Not algorithm to the fully-applied case:

Definition 2.4 (Fully applied higher-order pattern complement) Fiz a signature . For a fully ap-
plied higher-order linear pattern in canonical form M, define I' - Not(M : A) as:

'+ Not(E T : a) = 0
TFNot(h My...Mp:a) = diffp(h: 4, 2 a)U
(h(ZT)...(Zios )N (Zip1 1) ... (Zm T) |
N €T F Not(M; : A;),1 <i <m}
I'FNot(Az:A.M:A—B) = {Az:AN|Ne(,z:AFNot(M : B))}

where m > 0, (Z T) denotes that a fresh variable Z of appropriate typing may depend on variables in dom(T')
and

diffr(h: Am = a) = {g(Z41T)...(Z.T)|geTUT,g: 4, 5 a,n>0,h# g}
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Note that the definition makes an essential use of the fact that M is canonical and thus its matrix has atomic
type a.

Remark 2.5 Forhe TUL,TF Not(.h :a) = diffp(h : a).
Proof: Consider the 0-ary application case. ]
We will suppress mention of the type in I' - Not(M : A) when it can be inferred from the context.
Example 2.6 Consider the untyped \-calculus®.
e = z|Az.eferer

We encode these expressions using the usual techniques of higher-order abstract syntaz (see, for example,
[MP91]) as canonical forms over the following signature Xigpm, .

erp : lype
lam : (exp — exp) — exp
app : erp — exp — exp

The representation function is given by:

e

0 = z:exp
"Az.e? = lam (Az:exzp."e")
ferex’ = appTe” Tey”

As usual with higher-order abstract syntax [PE88], we identify the name of (bound) variables in both lan-
guages. The adequacy of the encoding bijectively relates c-equivalence classes of object-level terms. with
Bn-equivalence classes at the meta-level. Now, suppose we want to negate the identity predicate on unary
function types:

td(Az:exp. ).

The intuitive answer is as follows:

—id(Az:exp. app (E1 z)(E; x)).
~id(Az:exp.lam (Ay:exp. (E z y)).

This follows from the computation of - + Not(Az:ezxp.z):
-+ Not(Az:exp.z) = {Az:exp.Z|Z € (z:expt Not(z))}
= {Az:exp. Z | Z € diff,...p(z:exp))}

= {Mz:exp.Z | Z € {app (Erz)(Esz),lam (Ay:exp.(E z y))}}
= {Az:ezxp.app (E; z)(Es z), z:exp.lam (Ay. (E z y))}

For another illustration, consider the representation of an object-language (B-redex:
T(Az.e) 7 = app (lam (Az:exp.Te™)) Tf7

where "e' my have free occurrences of x. When written as a pattern with variables Feypyeop and Fogp
ranging over closed terms, this is expressed as app (lam (Az:ezxp.(E z)) F). Consider the predicate:

betardz(app (lam (\z:ezxp.E x)) F).

The complement of the arguments in the empty context contains every top-level \-abstraction plus every
application where the first argument is not an abstraction:

-+ Not(app (lam (Az:ezxp.(E z)) F)) = {lam (Az:exp.Z z),app (app Z1 Zs) Z3}

2We use A for lambda abstraction in the object-calculus, not to be confused with X in the meta-language.
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Thus the negation of the betardz predicate is:

—betardz(lam (Azx:exp. Z x)).
—betardz(app (app Z1 Z») Z3).

If the term to complement is complex, we need to call the Not algorithm recursively as many times as
its depth. Let us see another slightly more complicated example.

Example 2.7 Consider the signature of numerals and the problem -+ Not(Af:n — n. f 0).
‘FNot(Af:n—=n.f0) = {Mmn—-nZ|Ze(fin—nkNot(f0))}
{Min—=nZ|Zedifff(f)u{f 2Z2'|Z" € (f:n—> nt Not(0))}}

= {Mm-onZ|Ze{0,s(Z /HU{f Z'|N' €{f(Z; f),s(N3 f)}}
= {Mm-oan0An-ons(Z ), \finon f(f(Z2 ), . f(s(Z3 £))}

2.5 - Partially Applied Terms

Consider a predicate on the signature ¥;,,, true if a unary (object-level) function "Az.e” does not depend
on its argument. This can be encoded using a pattern variable E,.;, which does not depend on z.

vacous(Az:exp. E). (2.2)

Intuitively, the complement should be a predicate, say strict, true when the function does use its arguments.
Note that there is no finite set of patterns which has as its ground instances exactly those terms M which
depend on a given variable z. One way to express it is as follows:

strict(\z:exp. x).
strict(Az:exp. app (E1 ©)(E; 7))

+ strict(Az:exp. Ey ).
strict(Az:exp. app (Ey z)(Ey z))

+ strict(Az:ezp. Fs ).
strict(Az:exp.lam (\y:ezxp. (E z y)))

«— (Vz:exp. strict(Az:exp. (E z z))).

Hence the complement of a fact, whose arguments are partially applied patterns, may lead to possibly
hypothetical and parametric clauses.

Example 2.8 The encoding of an n-redex takes the form:
TAz.e 27 = lam(Az:ezp.app "e™ )

where " may contain no free occurrence of x. The side condition is again expressed in a pattern by
introducing an ezistential variable E.;, which does not depend on z, that is lam(Az : exp. (app E) x).
Hence, its complement with respect to the empty context should contain, among others, also all terms

lam (Az:exp.app (F z) Z)
where F' must depend on z.

More generally, we would have to decorate programs with predicates discriminating when a pattern is
fully applied or not. It is clear that the simply typed A-calculus, or, for that matter, every other intuitionistic
type theory is not strong enough to represent the complement of partially applied patterns. This failure of
closure under complementation cannot be avoided similarly to the way in which left-linearization bypasses
the limitation to linear terms and it needs to be addressed directly.

One approach is taken by Lugiez [Lug95): he modifies the language of terms to promote constraints
to first-class objects, similarly in spirit to explicit substitutions. For example Azyz. M{1,3} would denote
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a function which depends on its first and third argument. The technical handling of those objects then
becomes awkward as they require specialized rules which are foreign to the issues of complementation.

We can instead internalize the (in)dependence constraints in a type theory which explicitly take into
account the occurrence issue. Since our underlying A-calculus is typed, we use typing to express that a
function must or must not depend on its argument. Following standard terminology, we call such terms
strict in x and the corresponding function Az : A. M a strict function. The natural choice is a calculus of
strict types and is formalized in Section 3.1. We first give an informal presentation.

We can introduce a strict application primitive constructor, say F' #x, which express the fact that F
must use an argument z mentioned in the context. Thus for example:

-+ Not(Xe:ezp. E) = \z:exp. F #z
Therefore, the complement of (2.2) would be:
—wacous(Az:exp. F #z).

Conversely, taking the complement of terms where arguments must occur yields terms where some argu-
ment must not occur: for example
- Not(Az:exp. \y:ezp. E ¥y #z) = {A\z:exp.\y:exp.F,\z:exp. \y:exp. Fl#x,
Az:exp. \y:exp. Fz#y}
Let T, Ym be two sets of variables such that ¥, C Z,. Let Z;, = T,, — ¥n. We first treat the intuitionistic

application case. The complement of AT;. E ¥, is the set of terms that may depend on 7, but has to
depend on one of the Z,’s, that is p terms such that, for an appropriate context I':

TFNot(Egm) = #

C-

{Ej Ym 21---2j—1 " Zj Zj+1 ...zp}

j=1

The complement of terms with strict application is defined as:
m
L'+ Not(E #y#ys... #ym) = (J{EBj w1 vjc1 vjs1--.Um}
=1

Example 2.9

-+ Not(Azyzw. E y w)
- Not(Azy. E #x #y)

{Azyzw. Fy y w #z 2, dzyzw. Fy y w z #2)
{Azy. i z,\zy. Fy y}

I

Yet, there is a certain asymmetry between strict and intuitionistic application: while the former com-
pletely determines the occurrence status of a variable, the latter leaves the status floating indeterminately
between the possibility of occurrence or not. We can benefit from a notation which captures the ‘non-
occurring’ condition explicitly. One possibility is to decorate bound variables as well as function types with
three occurrence annotations 1,0,u with the intended meaning of:

1

T :  x must occur
z° : z must not occur
¥ : z is undetermined

Its intended semantics, as a type theory, is explored next.




Chapter 3

A Strict \-Calculus

In this Chapter we introduce a strict A-calculus and develop its basic properties, culminating in the existence
of canonical forms 3.2. Chapter 4 will introduce a restriction of the language for which complementation is
possible.

3.1 Strict Types

As we have seen in the preceding Chapter, the complement of a partially applied pattern in the simply-
typed A-calculus cannot be expressed in a finitary manner within the same calculus. We thus generalize our
language to include strict functions of type A = B (which are guaranteed to depend on their argument)
and invariant functions of type A — B (which are guaranteed not to depend on their argument). Of
course, any concretely given function either will or will not depend on its argument, but in the presence of
existential variables we still need the ability to remain uncommitted. Therefore our calculus also contains
the full function space A = B. A similar calculus has been independently investigated in [Wri91, BF93]: for
a comparison see Section 3.3.

Labels k == 1]|0]u

Types A == a| A 5 Ay

Terms M == c|z|Azh:A. M| (M, My)*
Contexts T == -|T,z:A

Note that there are three different forms of abstractions and applications, where the latter are distin-
guished by different labels on the argument. It is not really necessary to distinguish three forms of application
syntactically, since the type of function determines the status of the application, but it is convenient for our
purposes. If a label is u it is called undetermined, otherwise it is determined and denoted with the metavari-
able d. ‘

We use a formulation of the typing judgment with three zones, containing the unrestricted, irrelevant
and strict hypotheses, denoted by I', ©, and A, respectively.

L'YGARM:A

We implicitly assume a fixed signature ¥ which would otherwise clutter the presentation. Recall that T'y, T’y
is a union of two contexts which do not declare any common variables. Recall also that we consider contexts
as sets, that is, exchange is left implicit.

Our system is biased towards a bottom-up reading of the rules in that variables never disappear, i.e. they
are always propagated from the conclusion to the premises, although their status might be changed.

Let us go through the typing rules in detail. The requirement for the strict context A to be empty in
the Id“ and Id' rules expresses that strict variables must be used, while undetermined variables in T or
irrelevant variables in 2 can be ignored. Note that there is no rule for irrelevant variables, which expresses
that they cannot be used.
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cAeX

———— Con
[;N-Fe: A

Id —_— I
(T,z:A); ;- Fx: A no Id® rule T;Qz:Abz:A

T, z:A); QG AFM: B
9
L;uAFXM“ A M:ASB

0;(Q,z:A);,A+-M:B

—— 51
LOAFNA M A3 B
;0 (A, z:A)F M : B

51T
;AR XYA M:ASB

LGAFM:AS B (T,A);Q;-FN: A
3 E
T;AFMN“:B -

DOGAFM:ASB (T,Q,A); - FN:A
IGAFMNC:B

5E

(C,AN); A FM:AS B (0, Am); BANEN A
= F
;0 (Ay,AN)FM N : B

Figure 3.1: Typing rules for A™
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1 1 1 1 Idl 1 1 Idl
yA;x:A>A->Brz: A>A—> B A= A= BsyAry: A |
_.)
(@A ASByA) by :AS B (z:AS3 AS B,yA);-Fy: A
ga(mAD AD B,y:A) & (zy')y' : B
Figure 3.2: First derivation of -;; (z:A = A = B,y:A) + (zy')y! : B
1 1 1 1 Idl 1 1 Idu
y:A; A A—->Brz: A5 A= B (z:A=> A— B,y:A);-Fy: A |
- FE
y:A;';:E:A—1->A-—1+Bl-zy1:A—1->B :z::A—-]-)A—l)B;‘;y:A}-y:A

5 (x:A-i) AL B,y:A) F (zyl)y1 : B

Figure 3.3: Second derivation of -;-;(z:A - A = B,y:A) F (zy*)y' : B

The introduction rules for undetermined, invariant, and strict functions simply add a variable to the
appropriate context and check the body of the function.

The difficult rules are the three elimination rules. First, the undetermined context I' is always propagated
to both premises. This reflects that we place no restriction on the use of these variables.

Next we consider the strict context A. Recall that this contains the variables which should occur strictly
in a term. An undetermined function M : A -5 B may or may not use its argument. An occurrence
of a variable in the argument to such a function can therefore not be guaranteed to be used. Hence we
must require in the rule = E for an application M N* that all variables in A occur strictly in M. This
ensures at least one strict occurrence in M and no further restrictions on occurrences of strict variables in
the argument are necessary. This is reflected in the rule by adding A to the undetermined context while
checking the argument N. The treatment of the strict variables in the vacuous application M N? is similar.

In the case of a strict application M N! each strict variable should occur strictly in either M or N. We
therefore split the context into Ajs and Ay guaranteeing that each variable has at least one strict occurrence
in M or N, respectively. However, strict variables can occur more than once, so variables from Ay can be
used freely in M, and variables from Ajs can occur freely in V. As before, we reflect this by adding these
variables to the undetermined context.

Finally we consider the irrelevant context . Variables declared in £ cannot be used ezcept in the
argument to an irrelevant function (which is guaranteed to ignore its argument). We therefore add the
irrelevant context © to the undetermined context when checking the argument of a vacuous application
M N°.

We now illustrate how the strict application rule non-deterministically splits contexts. Consider the
typing problem -;-; (z:A 5 AL B y:AF (zy')y! : B. There are four ways to split the strict context:

Ay=2A5 AL ByA Ay=-

Ay=2:A5ADB An =y:A
Ay =y:A AN=1zAHSASB
Ay =- An=1:A5H AS By:A

Only the first two yield a valid derivation (depicted in Figure 3.2 and Figure 3.3), as £ needs to be strict in

the leftmost branch.
Our strict A-calculus satisfies the expected properties, culminating in the existence of canonical forms
which is critical for the intended applications. We begin with the following:

Remark 3.1 (Inversion) All rules in A™ are invertible.

"We will often use inversion principles tacitly in proofs by structural induction on the typing derivation.
Note that, although typing derivation may not, typing is unique.

Theorem 3.2 (Uniqueness of Typing) If ;A FM : A and T QA M 2 A, then A= A'.

Id*
5E

Id!

1
e d
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Proof: By induction on the structure of the given derivations, exploiting ‘functionality’ of signatures and
contexts. g

We start addressing the structural properties of the context(s). Exchange is directly built into the
formulation and will not be repeated.

Theorem 3.3 (Weakening)

1.
2.

(Weakening*) If T; G A+ M : A, then (T,z:C); ;A F M : A,
(Weakening®) If T; ;A F M : A, then T;(Q,2:C); A - M : A.

Proof: By induction on the structure of the given derivation. O

The following properties allow us to lose track of strict and vacuous occurrences, if we are so inclined.
We use the phrase ‘by sub-derivation’ to localize the immediate sub-derivation(s) of a given one; ‘by rule’
means in this Chapter by application of the correct (and unique) typing rule, when not explicitly mentioned.

Theorem 3.4 IfT;(Q,2:C); A+ M : A, then (T,2:C); ;A M : A,

Proof: By induction on the structure of D :: I'; (2,2:C); AF M : A .

Case:
ase cAel
= Ide
0 (0,2:C); Fe: A
Then
cAeX
= Ide
T,z:C);Q;-Fc: A
Case:
D= Idv
(T,y:A4);(Qz:C);- Fy: A
Then
&= Id*
(T,y:4,z:C); ;- Fy: A
Case:
D= Id
;(Q,2:C);y:AFy: A
Then
&= Id*
T, z:C); y:AbFy: A
Case:
'DI
I;(Q,z:Cy:A);A+-M: B :
D= — 1
[;(0,z:C);AF (M°:A.M): AS B
r;(Q,z:C,y:A); A+ M: B By sub-derivation
(T, z:C); (N, y:A); A+ M : B By IH on D'
(T, z:C); AR (M°:AM):AS B By rule <> I
Case: D ends in - I or 2 I: the claim follows from an immediate appeal to the inductive hypothesis, as in

the above case.
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Case:
Dl DZ
r;(Q,zC;AFrM:AS B (T,A);(,z:C);- FN: A
D= 5 E
I;(Q,z:C);AF M N*: B
Dy =T;(Q,2:C);ArM:A> B By sub-derivation
C,z:C);AFM A B By IH on D,
Dy (0,A); (,z:C);  FN A By sub-derivation
I,A,z0;0;-FN: A .By IH on Dy
(T,z:C); ;A M N“: B By rule 3 E
Case:
D1 DQ
[;(Q,zC);A-M:AS B (I, Q,A,z:C);-FN: A
D= 3 E
I;(Q,z:C);AFM N°:. B
L;(Q,zC);ArM:ASB By sub-derivation
T,z:C);AFM:AS B . ByIHon D,
(T,0,A,z:C);-FN: A By sub-derivation
(0,2:C); G AFM N°: B By rule > E
Case:
. Dl DQ
(T,An); (R, 2:C);Ay - M: A= B T, Apm); (2, z:C); AN FN: A
D= S E
T;(Q,z:0);(An,Apm) - M N . B
(T,AN); (Q,2:C); Ay FM:AS B By sub-derivation
(T, z:C,AN); A FM: A B By IH on D,
(T, ApN); (2, 2:C);ANEFN A By sub-derivation
T, z:C,Apm); G ANEN A By IH on D,
(T, z:C); Q; (AN, Ap)F M N : B _ By rule - E
0
Corollary 3.5 (Loosening®) IfT;(Q,®);AF M : A, then (I, 8); ;A M : A
Proof: By repeated apb]ication of Theorem 3.4. O

Theorem 3.6 IfT;Q; (A, z:C) - M : A, then (I',z:C); [ A M : A
Proof: By induction on the structure of D :: T;Q; (A, 2:C) - M : A.
Case: D ends in Con, Id*: vacuously true.

Case:
D=————Jdl
Qzr:AFz: A

Then

u

£ =
T, z:A);Q;-Fz: A

Case:
L0A,2:.C,y:A) - M : B

D= — 51
I;0A,zC) - (\W':AM): A= B
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L0 A 2:C,y:A) - M : B By sub-derivation
(T,z:C,); Q; (A, y:A)- M : B By IH
(T, z:C); A F My:AM):AS B By rule

Case: D ends in 5 I or = I: the thesis follow from an immediate appeal to the inductive hypothesis as in
the above case.

Case:

* ;A zC)F-M: A3 B (T,A,2:C);Q;-FN: A

D= 5 E
Q;(A,z:C)- M N*: B
: ;0 (A,z:C)FM:AS B By sub-derivation
(T,z:C);GAFM:ASB By IH
(T,A,z:C), Q- FN: A By sub-derivation
(T,z:C);AFM N : B By rule
Case:
;0 (A,zC)FM:ASB (T,Q,A,2:C); ;- FN: A
D= > E
I (A,zC)F M N°: B
Q;(A,zC)FM:ASB By sub-derivation
(T,z:C);GAFM:AS B By IH
(r,0,A,2:C);5-FN: A By sub-derivation
(T,z:0); QA+ M N°: B By rule

Case: D ends in —. There are two sub-cases:

r€Ay D=
(T,AnN);Q; (A, zC)FM:AS B (T, A%, z:C); AN EN - A .
= FE
I;Q; (A, z:C,AN) - M N : B
(T,AN); Q; (AYy,z:C)FM: A5 B By sub-derivation
(I‘AN,:L'C)QA’ FM:A5B By IH
(T, C); GANEN A By sub-derivation
(T, zC) (AN,AM)I-MNI:B By rule
x € Ay Symmetrical to the above.
O
Corollary 3.7 (Loosening!) IfI';Q A M : A, then (T,A);Q;-+ M : A,
Proof: By repeated application of Theorem 3.6. a

Theorem 3.8 (Substitution Properties)
1. (Substitution®) If (T, z:A); ;A F M :C and (T,A);Q;- - N: A, then T;Q; AR [N/z]M : C.
2. (Substitution®) If T';(Q,z:A); A+ M : C and (T,A,Q);+-+ N : A, thenT; QA+ [N/z]M : C.

3. (Substitution') If (T,An);Q; (A, z:A) M : C and (T,Apm); Q4 An F N : A, then
T;0; (A, AN) F[N/z]M : C.

Proof: The proof is by mutual induction on the height of the derivation D of M : C. We show the crucial
cases.
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1. | Substitution*

Case:

Case:

Case:

Case:

Case:

Case:

Case:

D cCex o
= on
(T,z:4);9Q;-Fc: C

As [N/z]c = ¢, then

cCex
= —————Con
;N Fe: C

D= Id*
(MM, z:A4,y:C); Q- Fy: C

As [N/z]y =y, then
F = Id¥
(', y:C);Q;-+y:C

u

*(F,:B:A);Q;-l—x:C
As[N/zJz=Nand C=A,then F=€ =T, F N : C

Id

- T, z:A); Q;y:Chy: C
As [N/z]y =y, then

F=—————Id
I;QuChry:C
(T,z:A,y:B); ;AR M C
= i
(T,z:A); ;A - Ay*:B.M:B5 C
(T,z:A,y:B); G AFM: C By sub-derivation
;0-FN:C By hypothesis
(T,y:B);Q;- - N:C By Weakening®
(T,y:B); ;A [N/z]M : C By IH
LA (W*:B.[N/z)M): A5 B By rule
;AR [N/z)(Ay*:B.M): A3 B By subst.
D ends with > I, I: similarly.
D, D,
T, z:A); GAFP:BSC (T,A,2:4);Q;-FQ : B
D= ~ 5 E

T,z:A); AP QY :C
(T,z:4);Q;AFP: B> C By sub-derivation
Ex(D,A);Q-FN:A By hypothesis
I‘,Q,AP—[N/z]P B3 C By IH on D; and £
(T,z:4,A);Q;-+Q : B By sub-derivation
(I‘,A),Q -k [N/x]Q B By IH on D and &
;AR ([N/w]P)([N/z} . C By rule
;AR [N/z](P QY): C By substitution.
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Case:
Dl D2

(T,z:A); ;AFP:B3C T, A,Q,z:4); -+

Q:B

D=
(T,z:A); AP QR C
(T,z:4);Q;A+P:B3C
Ea(D,A;Q;-FN:A
. ;AR [N/z)P: B3 C
T, z:4,Q,A);-FQ: B
= (T,AQ;5-FN:A
(T,A,9);5-+[N/2]Q: B

5E

By sub-derivation

By hypothesis

By IH on D; and &
By sub-derivation

By Loosening?® Q in &
By IH on D5 and &'

T; AR [N/z)(PQ)Y°:C By rule
Case: D =
T,2:4,A¢0); 8pFP:B5C T, z:4,Ap); M- Q: B
> E
(T, z:A);Q; (Ap,Ag) FP Q' : C
(T,2:4,A0); ;Ap-P:B = C By sub-derivation
Ex(D,Ap,Ag); Q- FN: A By hypothesis

(T,Aq);Q; Ap - [N/z)P: B 5 C
(F,z A,Ap) Q;AQ }—Q:B
T;Q; AP,AQ )k [N/x](P Ql:cC

2. | Substitution® | Similar to the above.
3. | Substitution!

Case: D ends in Con, Id*: vacuously true.

{O

Case:

= Id}
T, AN); Az A
and [N/z]Jz = N;then Ay =, F =€ =T;Q;AnF N.
Case:
Dy
(I An); (Q,y:B); (Am, z:4) FQ : C

= — 1T
(T, AN); 4 (An, 5 A) F X°:B.Q: B> C

Dy (T AN); (Qu:B); (Am,z:A) FQ: C
ExTAm); QAN FN A

E (T, Apn); (Q,y:B);ANEN: A

T; (Q,y:B); (Am, An) F [N/2]Q : C

0;Q; (Ay,An) F M°:B.[N/z]Q : B> C
T;Q; (Ay, AN) F [N/z)(\y°:B.Q): B 3 C

Case: D ends with = I. Proceed similarly using Weakening®.

Case: D ends with = I. It follows by an immediate appeal to the IH.

Case:

(T,AN); (A, z:A)FP:B S C (T, Ap,z: A AN); Q- -Q : B

By IH on D; and &
By sub-derivation
ByIHon D, and £
By rule

By sub-derivation
By hypothesis

By Weakening® on &
By IH on D, and &’
By rule

By substitution.

(T,AN); 4 (Ap,z:A) P QY : C

> FE
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Dy (T,AN); @ (Ar,z:A)F P:BS C
Ex (T AM); ;AN EN: A

L0 (Apm, AN)F[N/2]JP:B 3 C

Dy = (0, Ap, T A, AN); Q- HQ : B
(T,Am,AN);Q;-F [N/2]Q - B

L5 Q5 (Ap, An) B [N/z)(P Q) : C

Case: D ends in = E: similar.

Case: D ends in - E: there are two sub-cases , where Ay = Ap,Ag:

r€Ap D=

D
(T,AN,A0);Q;(Ab,2:A)FP:B 5 C

By sub-derivation
By hypothesis

By IH on D; and £

By sub-derivation

By IH on D; and £

By rule

(I-\VAI\H:I::A’AlP); Q’AQ + Q B

(T.AN): (A, 24, AQ) F P QY : C

Dy = (T, AN, A0); 0 (Ap,z:4) FP:B 5 C
£ (D, ARAQ) U ANEN A
(T,00); (A%, AN) F [N/2]P:B = C
(T,A0,AN);Q; A F [N/2]P: B> C
Dy (T, AN, A AR AQ QB
E = (T,A, A, AN); - F N - A
(T,AN,Ap);Q Ag F[N/2]Q : B
L0 (A, Ag, An) F [N/2](P Q)

z € Ag Symmetrical to the above.

Theorem 3.9 (Contraction) Let z be a fresh variable of type A:

HE

By sub-derivation
By hypothesis
By IH 3 on D1,&

By Loosening! Ay

By sub-derivation

By Loosening! Ay in £

By IH1on Dg,g’
By rule

1. (Contraction*) If (T,z:A,y:A); ;AR M 2 C, then (T, z22A); G A F [2/y)([z/x]M) : C.
2. (Contraction®) If T'; (Q,z:4,y:A); A+ M : C, then T;(Q,2:4); A + [z/y]([z/z)M) : C.

8. (Contraction') If T'; Q4 (A, z:A,y:A) F M : C, then T'; Q5 (A, z:A) & [z/y]([z/z)M

Proof:

1. T,z A,y A; QA RM:C
(C,z:A,y:A,2A); AR M C
(T,y:4,A,2:4);Q; - Fz: A
(T,y:A,z:A); QA & [z/z)M : C
T,A,z2A);Q;-Fz: A

(T, zA); YA & [2/y)([z/=]M) : C

2. Similarly, using Substitution®.

QA A ypAFM:C
A)Q(A:cAyA)I—M:C
A,A)QzAI—z A

,y:4, z: A) }—[z/:c]M c
i (A y:A) Fz/z]M : C
),Q,zAI—z A

T;Q; (A, z:A) b [2/y)([z/z)M) : C

): C.

By assumption
By Weakening*
By rule Id*

By Substitution*
By rule Id*

By Substitution*

By assumption
By Weakening®
By rule Id!

By Substitution®
By Loosening!
By rule Id!

By Substitution!

O
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The notions of reduction and expansion derive directly from the ordinary 8 and 7 rules.
(Ozh:A MYN*F 25 [N/z]M
M:A%B I kA M ok

Indeed one of the main reason to introduce irrelevant variables, as ones which may occur but must not
be used, is to well-type n-expansion of invariant functions:

M:ASB 5 )04 M 2°

The subject reduction and expansion theorems are an immediate consequence of the structural and
substitution properties.

Theorem 3.10 (Subject Reduction) IfT0AFM: A and M Ly M then LGAFM A

Proof: By cases on k:

1. Let M = (Az*:B.P)Q%: A and M' = [Q/z]P.

;A (Az*:B.P)Q%: A : By hypothesis
Ex(T,A);Q;-+Q: B By inversion
T;GARAY:B.P:BS A By inversion
D:(I',z:B);Q;AFP: A By inversion
Ty AR[Q/z]P: A By Substitution* on D, €&

2. Let M = (A\z°:B. P)Q° : A and M' = [Q/z]P.

[;AF(:B.P)Q°: A By hypothesis
E:(,QA);-FQ:B By inversion
O;AFM:B.P:B3 A By inversion
D:uT;(Q,z:B);AFP: A By inversion
;AR [Q/zIP: A By Substitution® on D, £

3. Let M = (Az:B.P)Q! : A and M’ = [Q/2]P.

LA (Azt:B.P)Q': Aand A = Ap,Ag By hypothesis
Ex(T,Ap); M@ B By inversion
(T,Aq); % ApF Az :B.P: B A By inversion
D:(T,Ag); ) (Ap,z:B)FP: A By inversion
T;0;(Ap,Ag) H [Q/z]P: A By Substitution! on D, £

O

Theorem 3.11 (Subject Expansion) If[;QAFM: A5 B and M Iy M then D;GARM AS
B.

Proof: By cases on k:

L. ;AFM:AS B By hypothesis
C,z:A); QG AFM:AS B By Weakening®
(T,z:A,A);Q;-Fz: A By rule Id*
(T,z:A); Q; A+ M z¥: B By rule ©» E

AR A : A Mz : A3 B By rule 5 I
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2.

3.

58 M&S M
(Azk:A. M) N* Ly [N/z]M Ak AM S azk AL M
M Q N&Q
v

GAFM:ASB
T;(Q,z:A);AFM:ASB
(T,Q,z:A,A);-Fz A
(T,2:A);Q;A+Mz°: B

Figure 3.4: Reduction rules for A®

D;AF M AMaz®:ADB

;GAFM:AS B
(T,z:A); G AFM: A B
(T,A; Q;z:Abz: A

;0 (A,z:A)FMz' B

;AR :AMz':ADLB

(MNVQ&MQVH

NS

By hypothesis
By Weakening?
By rule Id*

By rule 5 E
By rule & I

By hypothesis
By Weakening*
By rule Id!

By rule = E
By rule & I

a

.
We can now give the definition of reduction in Figure 3.4: we write v for the reflexive and transitive
closure of 5.

Theorem 3.12 (Subject Reduction with Congruences) IfT50A F M @ A and M ST M then
;AR M ;A

Proof: By induction on the derivation of M o M', using Subject Reduction (Theorem 3.10) for the base

cases.

O

The following Lemma establishes a sort of consistency property of the type system, so that a term can
be typed only by exclusive contexts. In particular we show that a term M cannot be both strict and vacuous
in one variable, say z. This will be central in the proof of disjointness of term complementation (Theorem

4.20):

Lemma 3.13 It is not the case that both T'y;Qy; (A, x:C) F M : A and Ty; (Q2,2:C); Mg F M ¢ A,

Proof: By induction on the structure of Dy :: I'y; Q15 (A1,2:C) + M : A and inversion on

Dz " rg;(Qz,fE3C);A2 FM: A

Case:

Case:

Dy

= Id
I'; QAR A

but there can be no proof of z : A from I'y; (Q2, z:4); As.

No case for Id* and Con.

D,

;05 (AL, z:Cy:B)F M A

*Fl;Ql;(Al,x:C) FM':B.M:B3 A

BN
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and
Iy; (R2,2:0); (Ag,y:B)F M : A
Dy = — 51
Ty; (R, 2:C); Ao F W':B.M:B— A
T;0:; (A, zC,y:B)F M A By sub-derivation of D;
To; (Q2,2:C); (A2, y:B)F M : A By inversion on D,
1 By IH
Case: D; ends in = I, = I. The result follows analogously by IH.
Case: D; ends in > E, > E. The result follows by IH on the leftmost sub-derivation.
Case: D; ends in — E: there are two sub-cases:
Subcase: A}, = ¥, z:C
(T1,A5);Q; (¥, 2:C)F M : A B (T1,%},,2:0); ;AL FN A
1= 1 1 1 > E
Iy Q5 (8,2C,AN)F M N 2B
and
(T2,A%); (Q2,2:C); A3 - M:A> B (T2, A%)); (2, :C); AL N : A
D, = PR N - E
Lo; (Q9,2:C); (A, AN) F M N : B
(T1,A%); Q; (¥, z:C) - M : A> B : By sub-derivation of D;
(T, A%); (Qg,2:C); AL, FM: A5 B By inversion on D,
L By IH
Subcase: A} = ¥4, z:C: Symmetrically.
O

Corollary 3.14 (Exclusivity)
1. It is not the case that both I';Q; (A, z:C) - M : A and (T, Q,A);2:C;- F M : A.
2. It is not the case that both T'; (2, z:C); A+ M : A and (T, Q,A);;z:C+ M : A.
Proof:

1. It is not the case that I'; Q; (A, z:C)+F M : Aand T (0, z:C); A M : A
It is not the case that I'; Q; (A, z:C)F M : A and (T',A); (Q,z:C);- - M : A
It is not the case that I'; Q; (A, z:C)F M : A and (I',Q,A);z:C;- - M : A

2. Analogously.

By Lemma 3.13
By Loosening! A
By Loosening® Q

O

We end this section by checking that our strict calculus is a conservative extension of the simply typed .

A-calculus. We therefore define a forgetful functor from A™ to A

|A=>B| = |A|—|B]|
la] = a
lz| = =
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[ Az*: A M| = Xz:|A|. | M|
|M N¥| = |M||N|
|| = .
iT,z:A| = |T}z:|A4]|
| Z,aitype| = ||, atype
[ E,¢cA| = [Z],e| 4]

Theorem 3.15 (Conservativity)
IfI‘;Q;AI—A_I’ M:A, then |T|,|Q|,|A]| Fa=|M|: 4]

Proof: By induction on the structure of the given derivation. a

3.2 The Canonical Form Theorem

In this section we establish the existence of canonical forms for /\"’, i.e. f-normal n-long forms, which is
crucial for our intended application. We prove this by Tait’s method of logical relations; we essentially follow
the account in [Pfe92], with a surprisingly little amount of generalization from simple to strict types; we do
differ on the account of substitutions. 1

We start by presenting the inductive definition of canonical forms in A7. It is realized by the two
mutually recursive judgments depicted in Figure 3.5:

1. AFM LA M is atomic of type A.
2. TBAFMB A M is canonical of type A.

Lemma 3.16 (Soundndess of Canonical Terms) IfI; QA - M i} A, then T; QA M @ Al
Proof: By induction on the structure of the derivation of I'; ; A F M fff A. O

We then introduce conversion to canonical form in Figure 3.6. Note that conversion is not required to respect
the occurrence constraints, provided that we start with a well-typed term:

1. YVFMIN:A M converts to atomic form N at type A.
22V FMAON:A M converts to canonical form N at type A.

This utilizes weak head reduction, which includes local reduction (3) and partial congruence (v):

5 M50
12
Oa*: A MN* 5 [NJo]M (M N)F 25 (Q Ny

Theorem 3.17 (Conversion Yields Canonical Terms) If (I,QA)FM Y N: Aand I5AF M :
A, then T; QA F N {1 A ‘

Proof: By induction on the structure of D :: (I',,A) - M ff{ N : A and inversion on the typing derivation;
we show some cases:

Case:
ase D= T:Ae V¥

= o tcldvar
Uhzlz:A
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eI d 1d!
(T,z:A): ;- Fz | A no rule for cId® TiQzAbz|A°

CGAFMa
——————— At
IYBAFMAfra
(T.z:A); QB A-MO B
c—o 1T
YA AM)YAS B
T;0; (A, z:A) F M4 B

N c—>1T
T;AF (W :AM)YAS B
(A A MH{ B

5 cS1
;AR AMYNASB
UGAFMUASB T,A;Q-FNR A
[;OA-M N B

cSE

DGAFMIAS B (T,QA);-FNH A

0
c— E
;GAFMNC LB
T, AN); A FM LA B (T, Apm); AN ENB A
c>»>E
I;0; (A, AN)F M N' U B ’
Figure 3.5: Canonical forms
cAex zAe T
————teldc ——————— teldvar
Uhkele: A Uhzlz:A
M TFM'fM":a . WFM|N:a
te iy ————————tcAt
UV-MAM' :a U+-MfHN:a
V-Mz*yN:B . U+-M{P:ASB TFNHQ:A
tc— 1
THMA(Az®:A.N):ASH B YHFMNF L PQF:B

Figure 3.6: Conversion to canonical form

tce S E
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Subcase:
_——Idl
QoAb z: A
Then:
cld!
IO rAFz ) A
Subcase:
du
(T, z:A);Q;-Fx: A
Then:
cldt
T, z:A);Q;-Fz L A
Case:
whrk ' 1 "
M=M YFMQYM':a .
= whr
VFMAM a fe=
IUBARM:a By hypothesis
;AR M :a By subject reduction (Theorem 3.10)
G AFM fa By IH
Case:
V+-MIP:ASB TFNHQ: A
D= . . tc = E
Y+-FMNYLPQ":B
Subcase:
, GAFM:ASB (T,A);Q;-FN: A
D= ESE
riOQAFMNY:B
GA-PLAS B By IH
A% FQTA By IH
LYGARPQYLB By rule

Subcase: D' is E - E,E = E: analogously.

O
Since we have to talk about open terms, we will need a notion of context extension:
v >T
v>9 V' 5 A>0U
Lemma 3.18 (Weakening for Conversion to Canonical and Atomic Form)
IfOFMMNN:Aand V' >0, then U+ ML N : A
Proof: By induction on the structure of the given derivation(s). o

We can now introduce logical relations, in complete analogy with the usual definition for the simply-typed
A-calculus:

Definition 3.19 (Logical Relations)
1. VFMe[a) iff ¥+ M N: A, for some N.
2. W+ M e [A S B] iff for every ¥ > ¥ and every N, if @'+ N € [A], then ¥’ + M N* € [B].
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Lemma 3.20
1L IfOFMe[A], then UM N: A.
2. IfUFM[N:A, then ¥ - M € [A].

Proof: By induction on A.
Case: A = g. Immediate from definition.
Case: A=A% B.

1. ¥-Me[AS B]
U A>T
(P, zzA)Fz|z: A
(¥,z:4) F z € [4]
(¥,z:A) + M z* € [B]
(¥, z:A) - M z* 4 N: B
U-MpAF:AN:AS B
2V +-MIM,:ASB
¥ > and ¥'F N € [4]
UEFN{N,:A
VFMIM,:AS5B
¥'+MN* | M/Nt:B
¥'+MNke[B]
Y+HMe[AS B]

Lemma 3.21 (Closure under Head Expansion)
If U+ M €[A] and M *255 M', then T; ;A - M € [A].

Proof: By induction on A:

Case: A = q; immediate by definition and rule tc g

Case: A=A % B:

UM e[AS B]

'+ N e [A] for ¥ > ¥
'+ M' N* e [4]

(M N)k =25 (M7 N)*
U+ M Nk ¢ [4]
Y+Me[AS B]

By hypothesis

By rule

By rule

By IH 2

By definition of [
ByIH1

By rule

By hypothesis

By assumption
ByIH1

By Lemma 3.18
By rule

By IH 2

By definition of [-]

|

By hypothesis
By assumption
By definition

By rule v
By IH
By definition

O

Due to the need to S-reduce during conversion to canonical form, we need to introduce substitutions.

Differently from [Pfe92] and [Cer], we will not require substitutions to be well-typed.

Substitutions 6 ==¢€|0,M/z

For § = ¢', M/z, we say that z is defined in 6 and we write 8(z) = M. We require all variables defined in a
substitution to be distinct: we use dom(9) for the set of variables defined in 6 and cod(@) for the variables

occurring in the substituting terms. We assume them to be disjoint.
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Next, we define the application of a substitution to a term M, denoted [f]M. We limit application of
substitution to objects whose free variables are in the domain of 6:

Ble = ¢
[fle = 6(z)
[B) (M NF) = ((0]M) (1M
[B)(Ac*:A. M) = Xz*:A[0,x/2]M

Note that in the lambda case we can assume with no loss of generality that = does not occur in dom(#)Ucod(8).

We will also need to mediate between single-step substitutions stemming from S-reduction and simulta-
neous substitutions. We define how to compose single step bindings from a 8 reduction with simultaneous
substitutions:

[N/z]e = €
(N/=)6 [N/x16, ([N/z)M)]y

I

Lemma 3.22 [[N/z])0)M = [N/z]([6]M]).
Proof: By induction on the structure of Af. m]

Corollary 3.23 Assume z to be fresh in 8: [N/z]([6,z/z]M) = [0, N/z]AL.

Proof:

[N/z]([0,z/z))M = By hypothesis

[[N/z)(8,z/x)))M = ' By Lemma 3.22

([N/z]6, ([N/z)z)/z)) M = By composition of substitution

[6,N/z]M By application of substitution and z fresh
0

For a context ¥ = z;:41,,...,Zn:An, we introduce the identity substitution on VU asidy = 21/Z1,...,Zn/Tn-

Lemma 3.24 (Identity Substitution) If[5QAF M : A, then [idrr a.a))M = M.

Proof: By induction on M. a

We extend the notion of logical relations to contexts, exactly as in the simply typed case: a substitution
g is in the relation [¥] if for every binding M/z such that z:4 is in ¥, then M is in [A].

Definition 3.25
1. 2+0€[]iff 0=ce.
2. d+0¢ E(‘P,I:A)]] ifo =6 M/z, 2+ ME¢€ [A] and & 6 € [¥Y]

We remark that contexts are not ordered, hence, for ¥ = (I', 2, A) we will identify, for example, [¥, z:A}
with [(T, z:4,Q, A)].

Lemma 3.26 (Weakening for Logical Relations) If ¥ -6 € [A], then (¥,z:A4) + 0 € [A].
Proof: By induction on the structure of the given derivation. ]

Lemma 3.27 (Well-typed Terms are in the Logical Relation) IfT; ;A F M : A, then for every ®
such that ® F 6 € [(T,Q,A)], @+ [0]M € [A].

Proof: By induction on the typing derivation D :: OO AFM: A
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Case:

Case:

Case:

Case:

Case:

Case:

D= Id*
T,z:A);Q;-Fx: A
®-6e[(T,2:4,0)] By assumption
®+6(z) € [4] By definition of [-]
[0z € [A4] By definition of substitution
IS ——
i e:A-z: A
dF6e[(T,0z:4)] By assumption
¢+ 0(z) € [4] By definition of [-]
@+ 0]z € [4] By definition of substitution.
tAe X
p=_S85% on
Ii-Fe: A

Immediate by Lemma 3.20 and definition of substitution.

T,z:A); G AFM: B
= =
AR A M:ASB
(T,z:A); G, AFM: B By sub-derivation
dH6e[T,0A)] By hypothesis
¢ >®and '+ N € [4] By assumption
®'F(0,N/z) € [(T,2:4,Q,4)] By definition of [-] and Weakening (Lemma 3.26)
o'+ [0, N/z]M € [B] By IH
'+ [N/z)([0,z/z]M) € [B] By Corollary 3.23
o'+ (Az¥:A.[0,z/z]M)N* € [B] ' By Lemma 3.21
®' F ([0](Az*:A. M))N* € [B] By definition of substitution
o+ [fl(Mz“:A. M) € [A > B] By definition of [A - B]
L;(Qz:A);A-M: B
D= 31
OGARA%A M: A3 B
I;(Q,z:A);AFM:B By sub-derivation
d+6e[(T,0A)] By hypothesis
®' > P and &'+ N € [4] : By assumption
®'+ (0,N/z) € [(T,Q,1:4,A)] By definition of [-] and Weakening (Lemma 3.26)
&'+ [0, N/z]M € [B] By IH
@'+ [N/z]([8,z/z] M) € [B] By Corollary 3.23
'+ (Az:A.[6,2/z)M)N° € [B] By Lemma 3.21
'+ ([0](Az°: 4. M))N® € [B] By definition of substitution
®F[0)(Mz°:A. M) e [AD B] By definition of [A > B]
I;0(Az:A)F M : B
D=— LN

. -
;AR MYA M:AS B
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i (Az:A)-M: B By sub-derivation

dF0e[(l,QA)] By hypothesis

& > ®and '+ N € [4] By assumption

&' (0,N/z) € [(T,Q,A,2:4)] By definition of [] and Weakening (Lemma 3.26)

@'+ [0, N/z]M € [B] By IH

@' + [N/z]([8,z/z]M) € [B] By Corollary 3.23

&'+ (\z':A.[0,z/z)M)N* € [B] By Lemma 3.21

@' F ([f](A\z*: A. M))N? € [B] By definition of substitution

&'+ [f](\z':A. M) € [A > B] By definition of [4 = B]
Case:

OGARFM:ASB (T,A);Q;-FN: A
D= S E
COAFMNY:B

e[l A)] By hypothesis

OLAFM:ASB By sub-derivation

®F[6)M € [A > B] By IH

([LA); Q- FN: A By sub-derivation

- [A]N € [A] By IH

®>@ By rule

& F ([)M)([6N)* € [B] By definition of []

®+[6)(M N)* e [B] By definition of substitution
Case:

IGAFM:AS B (T,Q,A);5-FN: A
D= S E
[;A+FMN°:B

d+0ec[(T,0A)] By hypothesis

;GAFM:ASB By sub-derivation

$+[9)M e [A> B] By IH

(T,Q,4A);5-FN: A By sub-derivation

&+ [N € [A] By IH

>0 By rule

& F ([O)M)([B)N)° € [B] By definition of []

@+ [)(M N)° € [B] By definition of substitution
Case:

(T, AN); QA - M: A5 B (T,Am); GANEN A
D= - E
;0 (Ay, AN)F M N : B

d+6e[(TQ(AmAN))] By hypothesis

(T,AN); QA +FM:AS B By sub-derivation

&+ [0)M € [A > B] By IH

T, Ap); G ANENA By sub-derivation

d N e [A] By IH

>0 : By rule

@+ ([0)M)([6)N)! € [B] By definition of [']

@+ [)(M N)! € [B] By definition of substitution

]

Lemma 3.28 ¥ +idy € {¥].
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Proof: By a straightforward induction on ¥ using Lemma 3.20(2). v O

Theorem 3.29 (Canonical Form Theorem) If ;A F M : A, then there is N such that (I',Q,A) F
MAN:AandT;QQAFN A A

Proof: Assume I';,A F M : A: By Lemma 3.28 (I',Q,A) F idir.a) € [(T,Q,A)], hence, by Lemma
327 (I,Q,A) F [idira,a))M € [A] and thus by Lemma 3.24 (I',Q,A) - M € [A]; by Lemma 3.20(1),
(I,Q,A) = Mt N : A for some N. Additionally, by Theorem 3.17(2) I'; ;A F N fi| A. m|

We shall abbreviate the statement of the canonical form Theorem as ['; 2; A+ M i} A.

We will also need the typing and the canonical form rule for existential variables. We use & for arrays of
(distinct) labeled bound variables; if z* € ®, we set ®(z) = k. We say that I'; ;A b @ ok if the following
holds: .

d(z)=u ¢+ z¢€dom(l)
®(z)=0 & z€dom(N)
®(z)=1 & z€dom(A)

Moreover, if I'; ;A F M : Aand I'; Q; A F ® ok we may write "®7+ M : A. We assume that the type A in
E 4 is well-behaved w.r.t. ®.

;AR ok iUAREs ®:a
Pat
I'GAREL @ a YBARFEL @ la

cPat

Remark 3.30 Ezclusivity (Lemma 3.13) holds for open patterns as wéll.

Proof: Assume that both T'; Q; (A, z:C) - E @ : A and I'; (¥, 2:C); A" E & : A. Then T';; (A, 2:C) F
® ok and T; (V,2:C); A' I @ ok iff ®(z) = 1 and &(z) = 0, impossible. ]

3.3 Related Work on Strictness

Church original definition of the set Ay of (untyped) A-terms [Chu41] has this clause for abstraction:
If M € Ay and £ € FV(M), then Az. M € Aj.

i.e. in this language there cannot be any vacuous abstractions. It can be shown that the only difference
between A; and A - the usual definition of A-terms — is the lack of the combinator K. Indeed, it can be
shown that every term in A can be defined from Ay and K. The Al-calculus is the theory of conversion
restricted to Ay terms. This fragment was favored by Church over the nowadays usual calculus, because,
among other issues, it is strong enough to represent every partial recursive function, albeit not in the most
efficient way: see [Bar80] Chapter 2.2.2 — 2.2.5 and more extensively in Chapter 9. See [GdQ92] for an
historical account. :

This would correspond in a simply typed setting to allowing only strict types: more formally if we denote

with A the terms typable in a Curry system based on the = function space, then A7 = ASNA 1, as noted
for example in [BF93].

The combinatory counterpart of this calculus obviously excludes K and consists of I, W, B, C, see [CF58]
and [Bar80], Appendix B for an alternative basis. Those are the axioms of what Church called weak impli-
cational logic [Chu51], i.e. identity, contraction, prefixing and permutation. This establishes the link with
an enterprise born from a very different origin.

The relevance logic project emerged in fact in the early sixties out of Anderson and Belnap’s dissatisfaction
with the so-called ‘paradoxes of implication’, let it be material, intuitionistic or strict (in the modal sense of
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Lewis and Langford); it was built on the work of Moh, Church, Parry in the fifties! and climaxed with the
publication of the first volume of Entailment [AB75] (the second one was published only in 1992 [AAB92)).
Following Girard’s and Belnap’s [Bel93] suggestion, we will not refer to our calculus as relevant, but as strict
logic, as the former may also satisfy other principles such as distributivity of arrow over conjunction.

On an unrelated front, starting with Mycroft’s seminal paper [Myc80], compile-time analysis of functional
programs concentrated on strictness analysis in order to get the best out of call-by-value and call-by-need
evaluation; first in terms of abstract interpretation, later by using non-standard types to represent these
‘intensional’” information about functions (see [Jen91] for a comparison of these two techniques). However,
earlier work as [TMM&89] used non-standard primitive type to distinguish strict or non-strict terms, closed
only under intuitionistic implication. Not forgetting Wadler’s early paper [Wad90] on using linear logic for
sharing analysis, Wright [Wri91, Wri92] seems the first one to have extended the Curry-Howard isomorphism
to (the implicational fragment of) relevance logic and explicitly connected the two areas, although both
[Bel74] and [Hel77] had previously recognized the link between strictness and relevance?.

In [BF93] the author summarizes the above-mentioned idea of expressing via types the reduction behavior
of terms. He characterizes in an operational sense the class of terms which need their argument, the idea
being that not only each terms need to be strict, but so does the result of each application. M is not strict
if for all N no descendant of IV is in the normal form of M N. This class is then shown to be equivalent to
the Curry-typable fragment of A;.

We now discuss the Curry typing system proposed there, which makes available strict, invariant and
intuitionistic types: yet, it is biased towards inferring strictness information, which ultimately lead to a
difference of expressive power from our calculus. Some rules are presented in Figure 3.7 - we omit the
introduction rules which are as expected — transliterated in our notation. There is only one context, where
variables carry their occurrence status as a label. Being a term assigment system, there are no different
abstractors or applicators, but different rules. Note that there is only one identity rule, the strict one,
so that e.g. Az.z : A > A is not derivable, as it can be given the more stringent type 4 - A. Let
us concentrate on the elimination rules: the side condition enforces the information ordering, so that for
example A' 5 B < A % B’, provided that A < A’,B < B’. This allow to infer by strict application
I,I'FMN:CfromTPHM: (A B) 5 CandI'F A% B. The latter is instead forbidden in our system
by the labeled reduction rules. The rationale on the substitution operation on context is that in app —
A is not relevant to B, so all hypothesis should be deleted. Instead, in order to preserve every variable
declaration, their strict label is changed into irrelevant. This would amount to moving the strict variables in
the irrelevant context in our system. Note the difference with our rule, where the latter variables are moved
in the undetermined context. Similarly in app — strict labels turn into undetermined. Moreover, having only
one context, the author needs a strategy to deal with same binding with different annotations; the solution
is that while propagating premises top-down a binding z':4 supersedes z%:A which in turn supersedes z°: 4.

The author goes on (see also [WBF93]) detailing a system which refines the strict calculus by allowing to
count usage, motivated by sharing analysis; thus A - B denotes a term where A is used 7 times to infer B.
Undetermined usage is then added via dummy variables. This unfortunately leads to an undecidable type
checking problem.

In [Wri96] Wright introduces an Annotation Logic as a general framework for resource-conscious logics.
The annotation logic has formulae/types of the form

A:=X* A5 B
for any annotation k and has structural and connective rules as well as annotation ones:
T+ Al IA'v B
— xk —+k
I*F A% I,A%*+B

The latter implement rules such as promotion/dereliction. By instantiation with different algebras of anno-
tation, we get systems as linear, strict logic as well as various other usage logics. An abstract normalization

1Some early work in the twenties in the Soviet Union was, at the time, not accessible.
2Note that we have became aware of this literature only after having fully developed our calculus which was modeled after
the two-zoned linear logic calculus.
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var
I[1:=0],z":4AFz: A

r'-M:A5B I'EN:A
IL'+FMN:B

app —l->

r'-M:A3B "FN:A
I,I'[1:=0FM N:B

'rM:A5B I'EN:A
T'l:=u]FM N:B

u

app —

All elimination rules have the condition A’ < A
Figure 3.7: The system in [BF93]

procedure is sketched, which however needs commutative conversions (e.g. the case contraction/arrow elimi-
nation) already in the purely implicational fragment. Another problem is that properties as loosening should
in our opinion be admissible rather than primitive rules.

Bunched Implication

In a series of papers Pym et at. (see [Pym99] and references therein) introduce a first-order and its corre-
spondent dependent type calculus which aim to couple multiplicative and addititive implication. The two
are distinct by allowing two different constructors for contexts which are called “bunches”. This is diffet-
ent from a zoned calculus as bunches can be nested. As expected, contraction and weakening are allowed
for additive assumptions but not for multiplicative ones. The resulting logic can be seen as variant of rel-
evant logic, as there is no requirement that an argument to a multiplicative function must be used only
once, but only that it should not share with other variables in the (proof) term. Thus, in out terminology
A3 (A3 A3 B) S B) is derivable, but not A - ((A = A - B) = B). Moreover, the logic allows
additive conjunction to distribute on additive disjunction, which is not allowed in multiplicative additive
intuitionistic linear logic. Its naturality should follow from its categorical semantics. Its correspondent
dependently-typed calculus, dubbed RLF is proposed as a resource conscious conservative extension of LF.

Relevant Logic Programming

In [Bol90] the author presents his approach to relevant, i.e. in our terminology strict logic programming as
part of his dissertation on ‘Conditional Logic Programming’ [Bol88]. He makes a (weak) case for its utility
in applications such as planning and diagnosis, whose hypothetical queries should indeed use their premises.
The system boils down to a strict version of N-Prolog. Unfortunately the author was only partially aware
of Girard’s work on linear logic, and entirely not aware of the notion of uniform proof [MNPS91], although
he gives a brave attempt to a mainly proof-theoretic approach: thus, as Gabbay and McCarthy before,
he embarks on an awfully complicated and low-level description of an interpreter which enforces the usage
requirement, for, I think, the following fragment; note that there are two conjunctions: & is additive and A
multiplicative. ‘

P|Q5 P|A&A; |Vz. A
PlOinQ:|Q1VQ:| A5 Q|32.Q

Assertions A

Queries @

If we were formulating a strict logical framework in the sense of [Cer96}, the former system would therefore
be a strict (no pun intended) subset of the latter.




Chapter 4

The Relative Complement Problem
for Higher-Order Patterns

We introduce in the next Section 4.1 a restriction of the language for which complementation is possible
(Section 4.2). Moreover, in Section 4.3 we will give an unification algorithm for this fragment. Section 4.4
shows how the former operations induce a boolean algebra over finite sets of terms.

4.1 Towards Term Complementation

Now that we have developed a calculus which is potentially strong enough to represent the complement
of linear patterns, we need to answer two questions: how do we embed the original A-calculus, and is the _
calculus now closed under complement?

We reiterate that we require that our complement operator ought to satisfy the usual boolean rules for
negation:

1. (Disjointness) It is not the case that some M is both a ground instance of N' and of Not(N).
2. (Exhaustivity) Every M is a ground instance of N or of Not(N).

Unfortunately, while the first property follows quite easily from Corollary 3.14, it turns out that exhaus-
tivity does not hold in general in the presence of intuitionistic application. In fact, consider the application
y z*; while it is clear that T' F y z% € ||E z* y¥|, it is not the case that T' F y z* € ||E z! y¥|| or
T'kyaz*e|Ez° y¥.

However, the main result of this Chapter is that the complement algorithm presented in Definition 4.13 is
sound and complete for the fragment which results from the natural embedding of the original simply-typed
A-calculus; this is sufficient for our intended application. We will proceed in two separate phases:

e Restrict to a class of terms (that we call simple) for which the crucial property of tightening (Lemma
4.5) can be established, yielding exhaustivity as a corollary.

e Bring simple terms to ‘full application’.

4.1.1 Simple Terms

Recall that we have introduced strictness to capture occurrence conditions on variables in canonical forms.
This means that first-order constants (and by extension bound variables) should be considered strict functions
of their argument, since these arguments will indeed occur in the canonical form. On the other hand, if we
have a second order constant, we cannot restrict the argument function to be either strict or vacuous, since
this would render our representations inadequate. )
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Example 4.1 Continuing Ezample 2.6, consider the representation of the K combinator:
TAz. Ay.27 = lam (Az:exp.lam (\y:exp.z))

Notice that the argument to the first occurrence of ‘ lam’ is a strict function, while the argument to the
second occurrence is an invariant function. If we can give only one type to ‘ lam’ it must therefore be
(exp 2 exp) = exp.

Generalizing this observation means that positive occurrence of function types are translated to strict
functions, while the negative ones to undetermined functions. We can formalize this as an embedding of
the simply-typed A-calculus into a fragment of the strict calculus via two (overloaded) mutually recursive
functions ()~ and ()*. First, the definition on types:

(A—)B)+ = A~ 5Bt
(A-B)™ = At 5 B~
- a

+

a =a

We extend it to canonical terms (including existential variables), signatures, and contexts; we thusly need
the usual inductive definition of canonical terms in the simply-typed A-calculus, which can be obtained by
dropping labels (Theorem 3.15) from the definition of canonical form in Figure 3.5. Note that embedding
only canonical forms rules out the case of ‘+-ing’ a lambda expression, as well as ‘—-ing abstractions and
non-atomic h € dom(I'U Z. :

(Az:A. M)~ = Az“:At. M~
M- = MT" for M of base type
zt = 2z
ct = ¢
(BEazy...70)t = Fy-z¥...2¢

(M N = M* (@)

O =
(T,z:A)t = I't,nAt
(Z,a:type)t = Tt atype

(Z,cA)t = Tt At
Example 4.2 Coming back to Ezample 4.1:
(lam (A\z:exp.lam (My:exp.z)))t = lam (Ar*:exp.lam (\y*:exp.z)')!

The image of the embedding of the canonical forms of the simply-typed A-calculus gives rise to the
following fragment:

Simple Terms M = Az“:AY. M| (..(h M) ... M) | (... (Bg- 71)%...3,)"

We often abbreviate (... (h M;)!... M,)! as h M}; similarly we shall use F,y- z%. Note that, by the use of
n-long B-normal forms, such terms, as well as pattern variables, must be of base type.

To prove the correctness of the embedding (Theorem 4.4), we will need the following:
Lemma 4.3 I[f T+ Es T, : a, then Y- - Fy- 7% : a.
Proof: A straightforward induction on A. m]

Theorem 4.4 (Correctness of ()¥)
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1.ITHFMANYA, thenTH, ;. F M~ A™.
2. IfTFMJ A, thenTt; ;- MT | AT,

Proof: By mutual induction on the proofs of D; : T M ft Aand D, =T+ M | A.

Case:

Case:

Case:

Case:

Case:

DQZ

cAelX
I'ktel A

atmCnst

Since ¢t = c and £*(c) = A" we conclude

D-_r:

o

[

clde
[t ket | At

atmVar

TzA)kz A

Since 2t = z and ' (z) = A" we conclude

I'FM|B—- A

It F MY (B> A
I+ F M+t | B- = At
'EN{B

I't;-FN- (B~

T+ b MT (N) LAY
F+;';~P‘(M N)+ iA+

I'FEAT,:a
It F Fs- 2%t
[t FFa-z8 la
It F(EaTh)t a0t

'FMla

.Mt Lat
It -F MY fat
rt-FM~fta”

2

F'FAMIB—- A

Cn

cld
(C.z:A)" Fzt | A

T-N1(B

2:-———————.——_——
T'FEAZ,la

'rMN|A

I'FEAT,:a

canPat

'M{a

1] = ——— canAtm
'FM1fa

atmApp

By sub-derivation
By IH 2

By the embedding
By sub-derivation
ByIH1

By rulec 5 E

By the embedding

By sub-derivation
By Lemma 4.3
By rule cPat

By the embedding

By sub-derivation
By IH 2

By rule cAt

By the embedding
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Case:
Lo AFrM1{ B
D1=
TFX:AM_YA—> B

canLam

T,o:AF M4 B

(T,z:A)* - M~ 4 B~

(T+, 3 AT F M~ 1t B

Ttk Xz¥:AT. My AT S B~
It F(r:AM)” +(A— B)~

By sub-derivation
ByIH1

By the embedding
Byrulec— I

By the embedding

[}

From now on we may hide the ()! decoration from strict application of constants in examples. Moreover,

for every judgment J on simple terms, we will shorten I';-;- - J into I' - J.

We can now prove the crucial tightening lemma. It expresses the property that every closed simple term

is either strict or vacuous in a given undetermined variable.

Lemma 4.5 (Tightening) Let M be a closed simple term:

1. If (T,z:C); A M | A, thenT;Q; (A, z:C)F M L A or T, (Q,2:C); A M | A,
2. If(T,z:C); A M A, thenT; 5 (A, z:C)F Mt A or T3 (Q,2:C); A - M 1t A

Proof: By mutual induction on D; :: (I',z:C); Q; A+ M | A and Dy :: (I, x:C); G A - M {r A.

Case:

cAeX
D, = clde
(T,z:C); Y- Fcl A
Then
cAeX
= clde
L;(Q,z:C);-Fel A
Case:
D, = cld*
(L,2:Cy:A); Q- Fy L A
Then
&= cld*
(T, y:4);(Q,2:C);- Fy L A
Case:
D = cld*
(T,z:C); -zl C -
Then
&= cld!
I;GzCrhzlC
Case:
D, = Id
(T, z:C); Ayl A
Then
5 = Idl
I (Q,2:C);y:AFy L A
Case:

(T,z:C); AR M | a
2 (F,z:C);Q;AI—Mﬁac

At
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T,z:C);GAFMla By sub-derivation
LA zC)FMlaor T;(Q,2:C);AFM | a ByIH 1
Subcase: T;Q;(A,z:C)F M la By assumption
T;0, (A, z:CYF M fra By rule cAt

Subcase: T;(Q,z:C);AF M la By assumption
L;(Q,z:C;AF M fra By rule cAt

Case:
(T,z:C,y:A); ;A M+ B
Dg = Cc —u) I
T,z:Cl;, AR (M AM)VAS B

T, z:C,y:A); ;A M B By sub-derivation

(T, y:A4); (A, z:C) F M ft Bor (T,y:4); (Q,z:CY; A M 1 By IH 2
Subcase: (T,y:A);Q; (A, z:C)+ M+ B By assumption

L;0A4,2:C)F Dy*:A M)t A> B Byrulec—> I

Subcase: (I',y:A4); (Q,z2:C); A F M f: symmetrical
Case:
(T, z:C,AN); G A FM L AS B T, z:C,AM); U ANENT A

Dy = c>E
(T,z:C); Q; (Ap,AN)F M N | B

There are four sub-cases, stemming from IH 1 and 2:

1. (0,AN); % (Ap,z:C)FM L AD B By assumption
(TAM);Q;(z:C,AN)F N+ A By assumption
(C,Apn,z:C); G ANFND A By Loosening! z
;0 (Ap,z:C,AN) M N B By rule

2. (0,AN); (2, 2:C); Ay - M LASH B By assumption
T, Am); (Q,z:C);, ANF N A By assumption
T;(Q,2:0); (Apm, AN)F M NV | B By rule

3. (I,AN);Q; (Ap,2:C)F M JAS B By assumption
T, Apm); (2, 2:C);ANFNf A By assumption
(T,2:C,AN); ;A F N A By Loosening® z
;0 (Ar,z:C,AN) M N | B By rule

4. Symmetrical to 3.
]

‘We remark that tightening fails to hold once we allow non-simple terms, namely intuitionistic application.
For example y:A = B,z:4;;-+yz*: Bbutbothy:A 5 B;;z:A/yz¥: Bandy:A = B;z:A4;- Y yz*: B.
This suggest that simple terms are not only a useful technical device to achieve term complement in the
simply-typed case, but possibly for other more general calculi such as the linear A-calculus.

Corollary 4.6 Let M be a closed simple term such that T';Q; A+ M ff} A; then there are A',QV such that
F=A"Q and ;(Q,Q); (A, A) - M f A.

Proof: By induction on I', using Lemma 4.5. ]
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Q = dom()\ | @ |
TrnPat
TFE® +— Z3»Q°
o AFM+— N
Tranlam

FFXz“:A. M «— Az":A.N
'M; +— N;---THFM, +— N,
'+h ML+ h N

TrnApp

Figure 4.1: Full application translation: I' - M +— N

4.1.2 Full Application

We can simplify the presentation of the algorithms for complement and later unification if we require any
existential variable to be applied to every bound variable in its declaration context. This is possible for any
simple linear pattern without changing the set of its ground instances. We just insert vacuous applications,
which guarantees that the extra variables are not used. In a slight abuse of notation we call the resulting
terms fully applied. 7

We describe in Figure 4.1.2 the judgment I' - M <— N which turns a term M into an equivalent fully
applied term N: while we need this translation specialized to simple terms, it is clear how to generalize this
judgment to the canonical forms of any strict term.

Example 4.7 Recall the simple term from Ezample 2.8:
lam (Az":exp.app E x)

has fully applied form
lam (A\z*:exp.app (Z 2°) z)

for a fresh existential variable Z of type exp > exp.

We may check the the output of the translation is indeed fully applied w.r.t. its definition in Figure 2.3:
Lemma 4.8 If M is a simple term and T'H M +— N, then T H N fa. .
Proof: A straightforward induction on the structure of the given derivation. O

We have now arrived to the following language, where the labeling on flexible patterns is unrestricted,
still called “simple terms”:

Simple Terms M = Ag:A%. M| (..(h M) ... Mo)! | (... (B 2¥)...2k)
To prove the set-theoretic adequacy of the translation, we will need the following irrelevance Lemma.
Lemma 4.9 (Irrelevance) If M is a closed simple term, then:
1L IfT;(Q,2:C);AF M A, thenT; ;A - M A
9. IfT;(Qa:C); A ML A, then ;A M | A.
Proof: By mutual induction on Dy :: T;(Q,2:C); A+ M L Aand D, = T;(Q,2:C); A+ M 1t A.

Case:
cAex

D, c
T;(Q,z:0);-Fel A

Idc

Th
en cAeX

= ————cldec
rQ-FelA
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Case:
D = cld®
(T,y:A); (Q,2:C);-Fy L A
Then
&= cld*
(T,y:A4); Q- Fy L A
Case:
D = cId!
L (Q,zC)y:AFyl A
Then

&= cld!
[;y:Abyl A

Case: D; ends in cAt: by IH 2.

Case:
T,y:A); (,z:C);AFM {+ B
D2 = N C —u') I
(20 A (WC:AM)Y A= B
T, y:4);(Q,z:Cy;, A+ M B By sub-derivation
T, y:A); @AM B By IH 2
OGAF (A :A M)A B By rule
Case:
(T,An); (Q,2:C); A FM A5 B (T, Anm); (,z:Cl; AN N A .
D, = - FE
T; (2, 2:0); (An, AN) F M N' | B ¢
(T,AN); (Q,2:C);Ay M LA B By sub-derivation
(T, AN); A FMUAS B By IH 2
T, Ap); (2,2:C); ANFN QT A By sub-derivation
(T, Apm); G ANENT A ByIH1
;9 (Ay,AN)F M N | B By rule
O
Note that irrelevance holds for any strict canonical terms, but it is false for terms containing redeces.
For example -;z:4;- F (Ay°: A.c) 2° : B, as z becomes unbound in the rightmost premise, but -;-;- i (Ay°:
A.c)z°: B.

Ground Instances

We recall that we assume every type to be inhabited, so that every term can be seen as the intensional
representation of the set of its ground instances. The judgment in Figure 4.2 T+ M € ||N]|| : A formalizes
conditions for M to be a ground instance of a simple linear term N at type A. We then extend the judgment
to sets of terms of the same type as follows:

Ji:1<i<n THMEe|N]:A
gTr
THMEIN,---Np|l: 4

Remark 4.10 ¥ - M € ||E4 ®||:aiff Mt P and - Ft: Aifft =22.S and if ;A F @ ok, then
AR S: A .

This fact will be heavily used in the following.
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Mltd -Ft: A
TFMel|lEs®|:a
(C,z:A)F M € ||N]||: B
TFA“:AMe |\ AN|:AS B

grFlx

grlam

THh:4,>a T'HM €||Ni]: 41 ---TF M, € ||A.| : An

— — grApp
TFhMLe|lhNi:a

Figure 4.2: Ground instance: ' M € ||N||: A

Lemma 4.11 (Ground Instance Weakening) IfT'F M € ||[N}| : A then (T,z:A) F M € ||N|| : A.
Proof: By induction on the structure of the given derivation. O

We implicitly use the above lemma to weaken different contexts with common basis to an unique one.
Now we can prove that the the full application translation preserves the set of ground instances.

Theorem 4.12 (Adequacy of the Full Application Translation) Let N be a simple term of type A,
suchthat TF N +— Q; thenTF M € ||N||: Aif T+ M € ||Q|| : A.

Proof: By induction on the structure of D : T' - M +— N and inversionon I' + M € ||N|| : A and
TFMe|Q]: A

Case:
Q = dom(I)\ | @ |
= TrnPat
IT'FE @+ Z & Q°
(=) THMe|Ep ¢ and @ = dom(T)\ | @ | By assumption
M)lt®*and -+t:Bfor ;- -F ®% ok By inversion
®;-FS:A By Remark 4.10
®:0-FS:A By Weakening®
M|t QO for -+t : B and ®;Q;-F (®%,0Q°) ok By Remark 4.10
T+ M € ||Fg Q0| By rule
(«) TFM €| Fg Q)| and Q = dom(T)\ | & | By assumption
M|t &“QO for - ¢ : B' and ®;Q;- F (®*,Q°) ok By inversion
®;0;,-FS:A By Remark 4.10
®:0-FSMNA By the canonical form Theorem
&, -FSHA By Irrelevance (Lemma 4.9)
®;;-F5:A By soundness (Lemma 3.16)
' M e ||Ep & By rule and Remark 4.10

Case: D ends in TrnLam or TrnApp: the result follows from a straightforward application of the inductive
hypothesis.

0

From now on we tacitly assume that all simple terms are fully applied. We call a term E:::’l1 ..z g
generalized variable.
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4.2 The Complement Algorithm

The idea of complementation for applications and abstractions is quite simple and similar to the first-order
case. For generalized variables we consider each argument in turn. If an argument variable is undetermined
it does not contribute to the negation. If an argument variable is strict then any term where this variable
does not occur contributes to the negation. We therefore complement the corresponding label from 0 to
1 while all other arguments are undetermined. For vacuous argument variables we proceed dually. If
' =x:A4),...,2,:A,, we write E T'* for the application of E z,%...z,". Such an application represents
the set of all terms without existential variables and free variables from I'.

In preparation for the rules, we observe that the complement operation on terms behaves on labels like
negation does on truth-values in Kleene’s three-valued logic, in the sense of the following table:

Not(l) = 0
Not(0) = 1
Not(u) = w

Note that these labels form a three-valued semi-lattice with the (reverse) partial information ordering 1 <
1,0 < u.

Definition 4.13 (Higher-Order Pattern Complement) Fiz a signature . For a linear simple term
M such that T+ M : A define T'+ Not(M) = N : A by the following rules:

F:1<i<n ke{1,0}

4 NotF1x
I'FNot(E i .. .zb ) oF :cfﬂ‘ il =S x?m(k) T, ...2ha
no rule for k=u
I'z:AF Not(M)= N :B
NotLam
I F Not(Az*:A. M) = \z“:A.N: A5 B
geTUNg: A1 S ... DA Da m>0,hZg
— NotApp!
LFNot(h M) = (...(¢ (Zy T¥) ...(Zm T¥)) @
F:1<i<n I'F Not(M;) = N: A;
NotApp?

I'F Not(h M3) = (... (h (Zy T*)'...(Zicy T¥)! N (Zigy T ... (Zn T¥) 1 a

where the Z’s are fresh logic variables of appropriate typing, h € SUT and T Hh: A4, 5 ... 5 A, > a.
Note that a given M may be related to several terms N all of which belong to the complement of M. Finally
we define T F Not(M)=N: AN ={N|TFNot(M)= N:A}.

We may drop the type information from the above judgment in examples and proofs; we will write
'+ M € ||[Not(N)||: A, when I'+ Not(N) =N and T+ M € ||NV]| : A.

Note that if E4 is a generalized variable considered in the empty context, it has the canonical form
AzZ . E 7¥. Hence -+ Not(E4) = 0 as expected.

Example 4.14 LetT = «:B,y:C:
[+ Not(E z%y') = {F z“y°)}
T FNot(E z%') = {F z'y*, G z%¢°} (4.1)

It is worthwhile to observe that the members of a complement set are not mutually disjoint, due to the
indeterminacy of u. We can achieve an exclusive ‘or’ if we resolve this indeterminacy, that is by considering
for every z¥ the two possibilities z!,z%. Thus, for example, equation (4.1) may be made explicit into:

{F o'y, G 22y H zoyo}
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It is clear that in the worst case scenario the number of terms in a complement set is bound by 2"; hence
the usefulness of this further step needs to be pragmatically determined.

Example 4.15 In the signature of numerals:
Not(Az*My®. s(E z'y%)! =
{PDa¥ayt. z, Az Ayt y, AU Ay 0, Azt dy®. s(Z 20y%), Arv ¥ s(Z' z¥yt)t}
We can now revisit! Example 2.8:
Not(lam(Az*:exp.app (E z°) z)) =
{lam{(Az*:exp.app (Z 2*) (Z' %)),
lam(Az¥:exp.app (Z z*) (app (Z' z¥) (Z"2%)),
lam(Az":exp.app (Z z*) (lam(\y*:exp. Z' z* y")),
lam(Az®:exp. lam(Ay" :exp. Z =" y*)),
lam(A\z" :exp. 1),
app Z Z'}
It is easy to show that simple terms are closed under complementation.
Theorem 4.16 If M is a simple term and I' F Not(M) = N : A, then N is simple.
Proof: By induction on the structure of D :: Tt Not(M) = N : A.

Case: D ends in NotFlx: immediate.

Case:
[,z:A+ Not(M)= N:B
D= NotLam
'+ Not(Az*:A. M) = Az*:A.N: A>3 B :
By sub-derivation ', z:A - Not(M) = N : B, hence by IH N is simple and so is Az%“:A. N.
Case:
geESUT,g: A1 D ... 5 A —a m>0h#g
D= — NotApp!
TFNotth M) = (...(g (Zy TN ... (Zm T*))! :a
Since every (Z; I'“) is simple, so is (... (g (Z; T*))'...(Z,, T¥))'.
Case: D =

I'FNot(M;)=> N:4; 1<i<n
CHNot(h M) = (...(h (Zy T¥) ... (Zica T NY (Zig1 T . (Za T¥) 2 a

NotApp?

By IH N is simple and as above so is every (Z; I'*). Thus
(. .. (h (21 F"))l e (Zi—l Fu) N1 (Zi+1 ]_'\u)l e (Zn I‘u))l is simple.

Corollary 4.17 If M is a simple term, and T'+ Not(M) = N, then N is a set of simple terms.

We address the soundness and completeness of the complement algorithm w.r.t. the set-theoretic seman-
tics: the proof obligation consists in proving that the former does behave as a complement operation on
sets of patterns, i.e. it satisfies disjointness and exhaustivity. Termination is obvious as the algorithm is

syntax-directed and only finitely branching. We start with soundness: for & = z*1 ... a:fi'll z¢ :nfj:'l‘ oo ke
let Not(®) = z¥...z%, o0 @ ¥, ... 2%

1To avoid too many indices on existential variables, we adopt a convention that the scope of existential variables is limited
to each member of a complement set. ‘
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Theorem 4.18 Let ' N : A be a simple (linear) term: for every Q such that I' = Not(N) = Q : A, it is
not the case that bothT+ M € ||[N||: A and T+ M € ||Q|| : A.

Proof: By induction on the structure of D :: T F Not(N) = Q.
Case: D ends in NotFlx; assume I' F M € ||E ®|| and consider z;:A € T:
Subcase: ®(z;) =1

U, (A, z:A) F @ ok By definition
't M € ||Not(E ®)|| By assumption
L'+ M €||Z Not(®)|| By rule NotFlx
U, Q;(A,z:A)F M Aand (P,Q,A);z:4;-FM: A By Remark 4.10
1 By Corollary 3.14.

Subcase: ®(z;) = 0: symmetrically.

Subcase: ®(z;) = u: trivially true.

Case: D ends in NotApp'. Suppose both T'+ M € ||h NYj|and T F M € |lg (Z; T¥)} ... (Zm T¥)|| for h 2 g;
but this is immediately impossible by rule grApp as the root of M should be both h and g.

Case: D ends in NotApp?.

T FNot(h N) = (...(h (Zy T .. (Zica T QY (Zipa T¥) ... (Z, T¥)) ta By hypothesis
P Not(N;)) = Q:A;, forsomel <i<n By sub-derivation
THhMLe||hNE|:a By assumption
CrhML€e|h(Z T ... (Zioy T QY (Ziga T .. . (Z, T%)| : a By assumption
'k M; e ||Ni : A By inversion
'k M; elQ] : A By inversion
4 : By IH

Case: D ends in NotLam:

[+ Not(Az¥:A.N) = Az*:A.Q: A> B By hypothesis
I'z:AFNot(N)= @ : B By sub-derivation
F'FAz“:A.Me€||Az*:A.N||:A> B By hypothesis
TkA*:AMec|l*:AQ||:A> B By assumption
I'z:AF M € ||N||: B By inversion
AR Me||Q|l: B By inversion
L By IH

0

Note that soundness is based on Corollary 3.14, which holds for any strict term: thus disjointness does
not require simple terms.

Lemma 4.19 Assume ' F E4 ® : a; either T F M € ||[E4 ®] : a or there exists 1 < i < n such that
[+ Not(Eg ®) = Z Not(®) :a and T'F M € ||Z Not(®)] : a.

Proof: Let T';-;- - M : A; then by Corollary 4.6 there exists Q@ and A such that I' = 2, A and ;Q;A +
ML A Fixzb for1<i<n

Case: For every z € dom(f2) such that z = mf" it holds k; € {0,u} and for every z € dom(A), k; € {1,u}.
Then '+ M € ||E @|.

Case: For some z € dom({?) such that z = z** it holds k; = 1. Then T'+ M € ||Z z%. IR SRR ad | R
that is I' - M € ||Z|Not(®)]].
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Case:

Mlt® -Yi:A
PFME||Ea®|:a
I,z:A-M¢|N|:B

THAs“:AM¢|A“:AN||: AS B

ngrFlx

ngrLlam

THh:4,>a Ji:1<i<nTFM¢|Ni : A4
THhMLg|hN]:a
gZh
Thg My é|h N :a

ngrApp

ngrAppCls

Figure 4.3: Not a ground instance: '+ M ¢ ||N||: 4

For some z € dom(A) such that z = z¥ it holds k; =0. Then T+ M € ||Z AL o R i | B
that is '+ M € ||Z Not(®)]|.

O

For technical reasons, we need the rules complementary to Figure 4.2, which are depicted in Figure 4.3:

We are now ready to prove exhaustivity of complementation.

Theorem 4.20 Assume 't N : A is a simple (linear) term; then if I' - M & ||N|| : A, then there is a Q
such that T - Not(N) = Q:Aand T+ M € ||Q| : A.

Proof: By induction on the structure of D :: T+ M ¢ ||N]|| : A.

Case:

Case:

Case:

Case:

D ends in ngrFlx: by Lemma 4.19.

D ends in ngrAppCls.

Tty M, ¢g|hNi:a By hypothesis
F'ENot(h NI) = (-..(g (Z1 T*)' ... (Zn T¥)) : a By rule NotApp!
T'FgMp€l|g(Zi T .. (Zn T a By rule grapp

D ends in ngrApp:

THFhMIg||hNL|:a By hypothesis
TFM; g||Ni||: A; forsome 1<i<n By sub-derivation
FFNot(N,)=Q:A;and T+ M; € ||Q|l : A; By IH
F'FM;e|(Z; T“? forallj#4,1<j<n By rule grFlx
T+ Not(h M1) = (...(h (Z1 T*))'...(Ziey T*)! N (Zipa T¥)!...(Z, T¥)) 1@ By rule NotLam
THhML€|h(Z T ... (Zica T QY (Ziga T¥) ... (Zn T¥)Y|| : @ ‘ By rule grapp.

D ends in ngrLam.

F'FXz¥“:A. M| Mx¥:A.N||: A= B By hypothesis
oA M ¢ ||N|:B By sub-derivation
TFz:AFNot(N) = Q:Band I'z:A+ M € ||Q|| : B for some Q By IH
' Not(Az*:A.N) = Az*:A.Q: A5 B By rule NotLam

TFAz“:A. M€ ||Az:A.Q||: A> B By rule grLam
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O
Corollary 4.21 (Partition Lemma) For a fized signature £ let '+ N : A be a (linear) simple term:
1. (Disjointness) It is not the case that T+ M € |[N||: A and T'+ M € ||[Not(N)]| : A.
2. (Ezhaustivity) THM € |[N||: A or T+ M € [[Not(N)|] : A.
Proof: Disjointness is entailed by Theorem 4.18, exhaustivity by Theorem 4.20. |

4.3 Unification of Simple Terms

As we observed earlier, we can solve a relative complement problem pairing complementation with intersec-
tion. We thus address now the task of giving an algorithm for unification of (linear) simple terms. We start
by determining when two labeling are compatible:

INl=unl=1Nnu=1
0N0=un0=0Nu=0

uNu=1u

Recall that @ is a list of labeled bound variables; we can extend the intersection operations to these

contexts.
N = .
(®,25)n(@",2*) = (@n @', zF %) if kN k' is defined.

Remark 4.22 If Fi;Qi;Ai F CI)i Ok, 1 S 1 S 2, then (Fl N Fg);(ﬂl,Qg);(Al,Az) F (‘Pl N (1)2) Ok, where
I'; N Ty denotes set-theoretic intersection and ($; N $4)(x) =&, (2) N ®y(z). Indeed, (B N P2)(z) = u iff
z € dom(Ty) and z € dom(T2); moreover (&, N®2)(z) = 0 iff either x € dom(Q UT2) or x € dom(Q UT).
Analogously for (®; N ®,)(x) = 1. From that, as before, it follows that ¥ = M € [|[Ex &, N & iff
M J, /\‘1’1 n ¢2 .S such that (Fl N Fz); (QI,QQ); (Al,Ag) FS: A

Following standard terminology with call atomic terms whose head is a free or bound variable rigid, while
terms whose head is an existential variable is called flexible.

Definition 4.23 (Higher-Order Pattern Intersection) Fiz a signature X. For simple (linear) terms
M and N without shared variables such thatT'F M : Aand T+ N : A, define T M NN = Q: A by the

following rules:

NFF
FI"(EI QI)Q(EQ ‘I>2)=>H (<I>lﬂ<1>2):a

no rule for flex-flex same

cCEX FF‘(Hl @1)0M1:>N12A1"'F|’(Hn <I>n)ﬂMn=>Nn:An
NFR¢

THE®N(CcM)=cNl:a
yel THH &)NM =N ATk (H, ®)NM, = Nyt A,
T'H(E®)N(y M))=yNi:a
ReTUS THFM NN, = Q :4;---TFM, NN, = Q,: 4,

NFRY

NRR

TFhMINANI=hQL:a
Lz:A-MNN=Q:B
TFA“: A MNA*:AN= X" AQ:AS>B

NnL
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where the H'’s are fresh variables of appropriate typing and n > 0. We omit two rules NRF¢ and NRFY
which are symmetric to NFR® and NFRY. The rules NFR® and NRF* have the following proviso: for all
r€®andl <i,j<n:

Vz.®(z) =0 Vi.®;(z) =0
Vz.8(z) =u—-Vi.®(z) =u
Vz.@(z) =1 = 3i.®i(z) = 1AV}, j #i.®;(x) =u

It

The rules NF'RY and NREFY are subject to the proviso:

V. ®(z) =0 Vi.®;(z) =0
Vz.®(z) =u—- Vi.®;(z) =u

Vezx #yA®(z)=1-3i.8(z) =1AVj,j #1.®(z) =u
(y) =uV (B(y) = 1AVi.®i(y) = v)

Finally defineTHFMNN:A=Q#Q={Q|TFMNN=Q: A}
Some remarks are in order:

e In rule NFF we can assume that the same list of variables, though with different labeling, is the
argument of E, F and H, since simple terms are fully-applied and due to linearity we can always
reorder the context to the same list.

e Since patterns are linear and M and N share no pattern variables, the flex-flex case arises only with
distinct variables. This also means we do not have to apply substitutions or perform the customary
occurs-check.

e In the flex/rigid and rigid/flex rules, the proviso enforces the typing discipline since each strict variable
x must be strict in some premise. If instead y is the projected variable, the modified condition on y
takes into account that the head of an application constitutes a strict occurrence; moreover, since y did
occur, it is set to u in the rest of the computation, as there are no more requirements on that variable.

e The symmetric rules take the place of an explicit exchaﬁge rule that is problematic w.r.t. termination.

The following example illustrates how the Flex-Rigid rules, in this case NF'R¢, make unification on simple
terms finitary.

Example 4.24 Consider the unification problem
:AFE 2z n ¢ (F z*)! (F' z¥)!
Since x is strict in the LHS, there are two ways in which ® can be ‘split’ leading to the following sub-problems:

l. A+E' zgin Fa*= H 1! T AFE" z*n F' z% = H' z¢
2. mAFE z*N F 2% = H g* TAFE" N F' gt = H'

Hence the result:
AFE 2N ¢ (F 2! (F' z*)' = {c (H 2')! (H' z*)*,c (H z%)* (H' ')}

Note that, similarly to complementation, intersection return a solution with some ‘overlapping’ possible;
again it is possible, in a post-processing phase to make the result exclusive: for example the above problem
can be made explicit in: :

zAFEz'n ¢ (F2¥)?! (F' ) =
{c (H z")' (H' z°)',c (H %) (H' z')},c (H ') (H' ')}
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However, differently from complementation, we must remark that the latter is not the most general
solution w.r.t. the subsumption ordering on terms based on the (reverse) partial information ordering on
labels. Indeed, a member of the intersection, e.g. ¢ (H z')! (H' z°)! is a lower bound of both terms above,
ie.

E 2!
c (H :L,u)l (Hl xu)l

c (H :El)l (Hl .’130)1
c (H zl)l (HI .’EO)I

INIA

but it is not the greatest upper bound:
¢ (H il:l)l (H'I xO)] <c (H :Bl)l (Hl :cu)l
The following example illustrates the additional proviso on NFRY:

Example 4.25 The unification problem y:A ( ) (y (F y*)! (F' y*)!) has no solution, whereas
y:AF(Ey)n(y (Fy) (F'y)) = {y (Hy")' (H'y°)'}.

Lemma 4.26 Let M be a closed simple term such that T'1;Q; A1 - M : A and To;Q9; A2 F M : A ; then
QAL FM:AandTy; Qo As M A ff (T NT); (,02); (Ay,02) F M2 A

Proof: (—) By induction on the size of (I'; UT2) \ (['1 NTY).

Base Let I’y = I'g, thus (I'; UT2) \ (1 NI'2) = @. Then by Exclusivity (Lemma 3.13) ; = 0, énd A = Ay
and the claim holds.

. Step Let I'; = (I'},z:C), where z ¢ dom(T';). By Tightening (Lemma 4.5) either I'}; (1, 2:C); A F M - A
or I'; ;5 (Ay,z:C) F M - A:

Subcase: T;(Q,z:C); A1 F M A By assumption
(Fl n Fz) (Ql,.’ll C QQ) (Al,Az) FM:A By IH
(Fl N Fz) (Ql,ﬂi C Qg) (Al,Ag) FM:A T ¢ dom(I‘g)
(T NT2); (01, Q2); (A, M) F M- A z € dom(f22) by Lemma 3.13

Subcase: T'1;Q; (Ar,2:C) = M : A. Analogously.

(+)

(Ty NT2); (1, 00); (A1, A)) F M : A ' By hypothesis
(T1 NT2,0); (AL, A) F M- A , By Loosening® on 2,
(T1NT2, 0, A2); ;A FM: A By Loosening! on A,
Fl;Ql;Al FM:A Since (Fl N Pz),QQ,Az,Ql,AI = Fl,Ql,AI
;00 A M A Analogously
O

We introduce two n-ary strict application rules, one which correspond to the imitation step and the
other to projection, which will be needed in the proof of Theorem 4.33 and 4.34; in the following we shorten
z €dom(T) toz €T.

T;AFce M ..M B

where I;Q;-Fc¢ : 4, > ... 5 A, - B and
1.VeeA.Fi:1<i<n.z€ AL
2. Vi:1<i<n.A*UA! = A.
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(F,A?);Q;A%FMZ‘:AZ’ 1<i<n
F;Q;AF@/M%...M&L:B

N

where To; ;Ao Fy: 4y 5 ... = A, > B and
lL.VreAz#y.qi:1<i<n.ze Al
2. Vi:1<i<n.AYUA!=A.
3. Ap={ylandVi:1<i<n.yeAl

Note that in the latter rule we consider only the case where y occurs strictly, that is Ag = {y}; indeed, if
y € T'o, then the rule is just a renaming of the previous rule =N E¢.

We proceed to show that both are derivable and invertible rules.

.5 Ap 5 B:oif (T,AR); AN M; 2 A; for 1 <0 <, then
R N B, where

Lemma 4.27 Let T;Q;- F c: A =
(T,A%); QA Fe MY ... Mj : Ajn 5.
1. VreA'3i:1<i<j.ze AL
1" VzeA¥.~Fi:1<i<j.z€ AL

2.Vi:1<i<j.A¥UAl = A*UAL
Proof: By induction on j.

j=0 Set Al = -; then by hypothesis and Weakening® (I', A%); ;- c: 4; ... > A, - B.

i+l (T,AY); A M 1 4,1 <4< By assumption
T, %) A Fe M. M}t Aj S ... A 5 B By IH
(T, A% Q80 F Myt Ajp By hypothesis
T, AL AL e M. MY, 1 Aj ... 5 A S B Byrule - E
such that:

(a) ze A}y @z el ,orze Al
(b) z€ A} &z € AY,, and z € A®,

We now show that the last step satisfy the conditions in the claim.

1. ze A} By assumption
T e, UMl By (a)
Subcase: x € Al
Ji1<i<j+1.z€Al
Subcase: € Al

z € Al, forsome 1 <i<j By IH
Jir1<i<j+1l.z€A} A fortiori

I’ zeAYy By hypothesis
T €AY By (b)
-3:1<i<j.z €A} By IH

T €AY, By (b)
gD, By disjointness of contexts

-3l <i<j+1.z €Al




4.3. UNIFICATION OF SIMPLE TERMS 63

2. Vil<i<j.AlUAY=AlUA® By IH
Al UAY, =ATUAY By hypothesis
Vil <i<j+1.A]UAY =AY UAY By (a) and (b) and set manipulations

O

1

Lemma 4.28 Let [;Q;-Fc: Ay = ... Ay 5 B:if (T, A QA ke MY M)t Ajy S 05 Ay
B, then for every 1 < i < j there are A¥, A} such that (T,A¥); ;A F M, 1 A; and

i
1.VzeAl3i:1<i<j.ze Al
1"V eA¥~F:1<i<j.z€ AL
2.Vi:1<i<j. A*UAl = A*UA'.
Proof: By induction on j.

j=0 Set Al = -; then by hypothesis and Weakening* (T, A%);Q;-Fc: 4; = ... = A, - B.

jH+1 (TAY; QA R e MY M) s A ... Ay S B By assumption
(F,Ai);Q;A# FeM}...M}:Aj; = ...> A, > B and
(T, A% )AL F Mgt Ajn By inversion on rule = E and
(zeAl ©zeAj,,vzeAl)and (z € A & z € AY,, Az € AY)
(C,LAY); ;A EM; : Ajfor 1<i<j By IH
since the conditions on the claim are satisfied as in the above Lemma 4.27.
O
Corollary 4.29 Rule 5 ES is derivable and invertible.
Proof: For derivability, use Lemma 4.27 with j = n, A* = -, A! = A; conditions 1. and 2. are immediately
satisfied. Ditto w.r.t. invertibility, using Lemma 4.28. D

Lemma 4.30 Let To; Q;y:... Fy: A = ... > A, = B. If (T,AY); ;A F M; ¢ A; for 1 <i < j, then
1

(C,A); A by M} .. M} Ajpy ... 5 An > B and
1. VzeAlJi:1<i<j.ze AL
I’ Ve A* -3 :1<i<j.z€ AL
2.Vi:1<i<j. A¥*UAl = A*UAL
Proof: By induction on j.
j=0 Let A; = {y} and weaken Ty to I', A¥; by hypothesis (I, A*); Q; Al F y4; = ... > A, = B.

j+ 1 Completely analogous to the same case in Lemma 4.27.

Lemma 4.31 Let To; Qyy:... Fy: Ay = ... 5 Ay = B:if (0 AY); QA Fe MY M)t Ajpy & 5
An 5 B, then for every 1 <1 < j there are A¥, A} such that (0, A¥); QA - M, : A; and -
1.VzeAl3i:1<i<j.zeAl
I'"VzeAl-Fi:1<i<j.re Al
2.Vi:1<i<j.A¥UA! = A*UAL

Proof: By induction on j similarly to Lemma 4.28. |
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Corollary 4.32 Rule = EY is derivable and invertible.

Proof: As in Corollary 4.29, using Lemma 4.30 and 4.31. |

We are now ready to address soundness and completeness of intersection:

Theorem 4.33 For any simple linear term N, and Ny without shared variables such that ¥+ N; : A and
UkNy: A if UM e ||Nif|: A and O+ M € ||No|| : A, then there is N such that U NN Ny = N: A
and U+ M € ||N||: A.

Proof: By simultaneous induction on the structure of Dy :: ¥ - M € ||Ny]|: Aand Dy : ¥ F M € ||Ny]| : A. ’
Case: D;,D; end in grFlx; by Remark 4.22 and the left-to-right direction of Lemma 4.26.

Case: D; ends in grFlx and D, ends in grApp: there are two cases depending whether the head of N, is a
constant or a bound variable:

Imit O+ M € ||c QL] By hypothesis
M=cMlandD? =¥+ M, € ||Q:lforall1<i<n By sub-derivation
UhcMel|E ®| By hypothesis
c m }t® wheret=2®.c E By sub-derivation
Q;AFctl:B For T; QA+ & ok
(T,A%);Q; At 0 A; For some A¥, A¥ satisfying 1 and 2, by inversion on rule = EP

(Corollary 4.29)
D =Tk M e€|E; & By rule grFlx choosing ®; such that (T', A¥); Q; Al + ®; ok
D; .V E; @iﬂQi:»NiforlgiSnand
U+ M; €||N]| By IH on D}, D? since the proviso is satisfied
D:UHE®NcQL=cN: By rule NFR®
U+ c M} € |lc Ni| By rule grApp

Proj Proceed as above, but using inversion on rule = E7, i.e. Corollary 4.32.
Case: D; ends in grFlx and D; ends in grApp: symmetrical to the above.

Case: D;,D; end in grLam:

Uk Az¥:A. M € ||Az¥: A Ny| . By hypothesis
Dy =¥, AF M € ||N}| By sub-derivation
¥ A% A .M € || Az*: A. No|| By hypothesis
DU,z AF M € ||Nso| By sub-derivation
DU,z AF N NNy = Nand ¥,2:AF M € ||N|| By IH on D1, D,
Uk Az : AN NAZY: A Ny = Az¥: AN By rule
U Az¥:A. M € || Az*: A. N|| By rule

Case: D;,D; end in grApp: a straightforward appeal to the inductive hypothesis as in the above case.

For the other direction, we are going to prove a stronger result:

Theorem 4.34 For any simple linear term Ny, and Ny without shared variables such that ¥+ Ny : A and
Wt Ny : A, for every N such that ¥ - NyN Ny = N if U M € ||N|| : A, then U+ M € ||N1]] : A and
TFMEe|N|:A. .

Proof: By induction on the structure of D :: ¥ + Ny N N2 = N and inversionon D' = ¥ + M € ||N|| : A.
Case: D ends in NFF; by Remark 4.22 and the right-to-left direction of Lemma 4.26.
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Case: D ends in NFR.

Du:UFE®NcQL = cNL By hypothesis
Di29YFE®NQ; = N,1<i:<n By sub-derivation
T+ ML efle Ni By hypothesis
U+ M e|N| By inversion
Ut M; € ||Q;i] and ¥+ M; € ||E; ;] By IH on D;
M; |t ®;, where t = A®; . ¢; such that (¥;, D¥); % Al t; : 4; By rule grFlx for (¥;,A¥); Q; Al + &,
QG ARe ZZ ‘a By rule E" (Lemma 4.27), since the proviso satisfies 1,2
Tt Mlel|E ®| By rule grFix
UM elcQL By rule grApp

Case: D ends in NFRY. Proceed as above, but using Lemma 4.30.
Case: D ends in NL; by IH as in Theorem 4.33

Case: D ends in NRR; ditto.
O

Corollary 4.35 (Adequacy of Pattern Intersection) Fiz a signature ¥. For every simple (linear) term
N1 and N, without shared variables such that T'F Ny : A andT'F Ny : A, for every M, T+ M € ||Ny]|: A
andTF M € [|N2]|: Aiff TH M € ||[Ny NNy - A.

Proof: From Theorem 4.33 and 4.34. =]

4.4 The Algebra of Strict Terms

An interesting and natural question is wondering whether complementation is involutive. The answer is
of course positive, since the latter is a boolean property and the complement operation has been shown
to satisfy “tertium non datur” and the principle of non-contradiction. Rather than proving involution in
isolation, we will show that every other boolean property is satisfied. As the complement of a term is possibly
a finite set of terms we need to extend the intersection and complement operations to finite sets of terms.
For the sake of readability, we shall define this the empty context. It is clear, although cumbersome, how to
generalize it. We also drop the type information and overload the singleton terms notation.

Definition 4.36 If M and N are finite sets of (linear) simple terms of type A, define:

MON 2 {QIlQeMNN,MeM,N €N}
Not(M) < ﬂ Not(M)
MeMm

Those operations on set of terms satisfy the same properties that ‘singleton’ intersection and comple-
mentation do.

Corollary 4.37 (Adequacy of Set Intersection) If N1, N are finite sets of (linear) simple terms of type
A, thenTHMe ||M]l: A and THM € ||Ny]|: Aff THM € ||N NNy : A

Proof: T - M € |Mi]| : Aand T F M € |[N2]] : A iff there is N; € N, and N, € N, such that
PMel|Ni||: Aand T'F M € || N2 : A iff, by Corollary 4.35, T F M € ||N; N Ny|| : A iff, by definition,
' M e |N NN : A m]

Corollary 4.38 (Set Partition Lemma) Let N be a finite set of (linear) simple terms of type A:
1. (Disjointness) It is not the case that '+ M € |[N]|: A and T + M € ||Not(N)]| : A.
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2. (Ezhaustivity) T M € ||N||: A orTF M € ||Not(NM)}} : A
Proof:

1. Assume ' - M € |N]|: Aand T + M € ||Not(NV )H A. Byrulegr;, ' - M € ||N|| : A, for some
N € N. By definition, I' F M € || Nyen Not(N)|| : 4; by (repeated application of) Corollary 4. 35
T' M € ||Not(N)| : A, for every N € N, impossible by the Partition Lemma.

2. Similarly to the above.

]

It is therefore possible to organize the set of finite sets of simple terms over a given signature, call it
Tr in a boolean algebra under set union, patterns intersection and complementation, by taking equality as
extensional identity (on sets of ground terms), that is, in symbols:

Ni= Ny iff M| = [Nzl

Theorem 4.39 Consider the algebra of finite sets of simple terms (Tr,0,U,N, Not) under set union, pattern
intersection and complementation. Then the following holds:

1. MAM =M.

2. MNN =2 NNnM.

3 MNNUP)=(MNN)UMNP).

4 MOAOWNNP)=(MNN)NP.

5. Not(Not(M)) =~ M.

6. Not(7rp) ~ 0

7. Not(0) ~ Tr
Proof: From Corollary 4.37 and 4.38 and the fact that U is set-theoretic. O
Corollary 4.40 The algebra (Tr,0,U,N,Not) of finite sets of simple (linear) terms is boolean.

Proof: Theorem 4.39 confirms that the above operators satisfy the boolean algebra axioms. m]

Corollary 4.40 guarantees that any other boolean operation is definable: indeed complementation and
intersection alone allows to define the relative complement operation:

Definition 4.41 Given M and N sets of simple terms of type A:
M-N £ Mn(Not(N))

The adequacy of this encoding follows 1mmed1ately from the Partition Lemma and soundness and com-
pleteness of intersection.

Corollary 4.42 T+ M € ||M| - |N|| if THF M € ||M-N]| .

Proof: T M € M| - |IN||if T+ M € M|l and T + M ¢ |N|| for every N € N iff (Corollary 4.38)
I'M e |M|and T + M € ||Not(N)|| iff (Corollary 4.35) T' + M € ||M N (Not(N))]| iff by definition
'FMe|M-=NJ. O
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It is notable that the U operator must be set-theoretic union rather than anti-unification or generalization,
as traditional in lattice-theoretic investigations of the algebra of terms [Plo71]. The problem is the intrinsic
classical nature of complementation which is not compatible with the very irregular structure of the lattice
of terms where anti-unification is interpreted as the lowest upper bound. Indeed, De Morgan’s rules would
fail, namely, denoting anti-unification with ‘v':

Not(s(0) V s(s(0))) = Not(s(X)) = 0 # {0, s(s(s(X)))} = Not(s(0)) N Not(s(s(0)))

We end this chapter with a preview of how term complement will be used as a building block of the
clause complement algorithm.

Example 4.43 We can combine Ezample 2.6 and 2.8

Not{(app (lam (Az¥:exp. E %)) F),lam(Az":ezxp.app (E 2°) 2)} =
Not(app (lam (Az“:erp. E %)) F)N
Not(lam(Az*:exp.app (E 2°) z)) =

{lam (A\z*:exp.(H zV)),
app (app H H') H"}
N

{lam(Az¥:exp.app (H z') (H' z¥)),
lam(Az*:exp.app (H z*) (app (H' z*) (H"zY))),
lam(Az":exp.app (H z%) (lam(Ay*:exp. H' z* y“))),
lam(A\z*:exp. lam(Ay*:exp. H =% y*)),

lam(Az*:exp. x),

app H H'} =

{lam(Az*:ezp.app (H z*) (H' z¥)),

lam(\z"¥ :exp.app (H z¥) (app (H' z*) (H" z%))),
lam(Az*:ezp.app (H =*) (lam{(Ay“:exp. H' z* y*)))
lam(Az":exp. lam( y*:exp. H' z%* y*)),
lam(Az":exp. 1),

app (app H H') H"}

Thus given the ‘program’:

betarr : isredz(app (lam (Az*:exp. E z*)) F).
etarz : isredz(lam(Az¥:exp.app (E z°) x)).

Computing the complement of each head as in Example 4.43 yields the complementary program:

nbl : non_sredz(lam(Az¥:exp.app (H z') (H' z%))).

nb2 : nonisredz(lam(Az¥:exp.app (H z*) (app (H' z*) (H" z%)))).
nb3 : nonsredr(lam(\z¥:exp.app (H z*) (lam(Ay*:exp. H' z* y*)))).
nbd : nonisredz(lam(Az*:exp.lam(My*:ezp. H ¥ y*))).

nbr : non.isredz(lam{Az*:exp.x)).

nb6 : mnon_isredz(app (app H H') H" ).

4.5 Summary

In this chapter we have been concerned with the relative complement problem in a setting where patterns
may contain binding operators, so-called higher-order patterns. Higher-order patterns inherit many pleasant
properties from the first-order case, even for complex type theories. Unfortunately, the complement operation
does not generalize as smoothly. The complement of a partially applied higher-order pattern cannot be
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described by a pattern, or even a by finite set of patterns. The formulation of the problem suggests that
we should consider a A-calculus with an internal notion of strictness so that we can directly express that a
term must depend on a given variable. For reasons of symmetry and elegance we have also added the dual
concept of invariance expressing that a given term does not depend on a given variable. We have developed
such a calculus, so that we can show that for a suitable embedding in our calculus simply-typed patterns is
such that the complement of a linear pattern is a finite set of linear patterns and unification of two patterns
is decidable and leads to a finite set of most general unifiers. Consequently, finite sets of linear patterns in
the strict A-calculus are closed under complement and unification. If we think of finite sets of linear patterns
as representing the set of all their ground instances, then they form a boolean algebra under simple union,
intersection (implemented via unification) and the complement operation.




Chapter 5

Elimination of Negation in Clauses

The transformational approach to negation in normal programs has a somewhat long history, see [Nai86] for
a survey of the early 80’s. The idea was to implement negation using inequalities, so that the complement
of any predicate occurring negatively in a program is synthesized to obtain an equivalent definite program.
This was first proposed in [ST8&4].

5.1 The Completion

At the risk of being trivial, let us start by asking naively what the complement of a program should be; if
we see the latter as a set of (possibly mutually recursive) predicate definitions, its negation would be the
set of the negation of those definitions. Thus, let us concentrate on a program definition as our target and
consider the simplest case, i.e. that of a single clause ¢{0) on the signature of numerals. Qur first instinct
would be to use the Not algorithm and by computing Not(0) = s(X) assert VX :nat. ~¢(s(X)); this is indeed
the right thing to do, but we need to justify it formally. We can look at the definition ¢(0) as a degenerate
case (that is with trivial condition) of inductive definition; an equivalent formulation would be:

VX :nat.q(X) «+ X =0.

for an object-logic equality symbol ‘=’, which simply expresses the condition X = 0 for atoms to be in
the inductive definition of g. In this Chapter we use just ‘=". The next step is to enforce the minimality
condition by saying that the latter is the only way to belong to the definition. One way to achieve that is
by exchanging the + connective into a biconditional :

VX :nat.q(X) & X =0.

This is in a nutshell Clark’s very fortunate idea of the completion of a program [Cla78]. What is left
is describing how to interpret the equality relation; this is accomplished by the so-called Clark’s equality
theory, that is the axioms of free equality: namely, the usual equality axioms including congruence, plus the
axioms for finite trees. Indeed, this theory is the axiomatic and proof-theoretic rendering of the unification
algorithm, for a proof see for example Stirk’s thesis [St492). For instance, the following is free equality over

numerals:
(Dec) : Vz,y:s(z)=s(y)oz=y
(Clh) : Vz:04# s(z)
(Ock) : Vz:z #t[z] if z occurs properly in ¢[z]
(DCA) : Vz:z=0V3Iy:z=s(y)

The last axiom is the Domain Closure Axiom [MMP88], which is required to give a complete axiomatization
of finite trees over finite signatures. Since we will not consider unification so far, we will keep this relation
uninterpreted; thus those axioms do not play any role, which is handy, as it allows us to dispense with the
issue of the compatibility of DCA with dynamic extensions on the signature.
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Vz.even(z) <> z =0V Iy.z = s(s(y)) A even(y)
~ep
V. -even(z) ¢ -(z =0V Jy.z = s(s(y)) A even(y))
~anf
Vz.-even(z) ¢+ £ # 0A (Vy.z # s(s(y)) V ~even(y))
~ift
Vz.-even(z) <> z #0AVy.z # s(s(y)) vV By .z = s(s(y)) A ~even(y))
~dnf
Vz . —even(z) & (z Z0AVy.z #s(s(y)) V(e #0ATy.z = s(s(y)) A —even(y))
M disunify(z#0AVy:z#£s(s(y)))
Vz.—even(z) < z=3s(0)V(z #0A3y.z = s(s(y)) A ~even(y))
Mdisunify(z£A0ATy:z=s(s(y)))
Vz . -even(z) <> z = s(0) V (y.z = s(s(y)) A ~even(y))
~“orettyp

odd(s(0)).
odd(s(s(Y))) « odd(Y).

Figure 5.1: Synthesis of the predicate odd

Of course, definitions are usually more interesting than a simple clause, so let us step to next simplest
example, even numbers:
even(0).
even(s(s(Y))) « even(Y).

To turn this code into a minimal inductive definition, we need to normalize the conjunction of clauses,
building what is known in the logic programming jargon as the completed definition of a predicate, a process
described for example in [AB94]. The net result is the axiom:

Vz.even(z) & z =0V Jy.z = ss(y) A even(y)

One way to obtain the complement definition, that is odd, would be to reason classically on the completed
program by taking the contrapositive of the completion. Let me offer the following rational reconstruction.
We may use rewrite rules to achieve conversion into negation normal form (nnf) and into disjunctive normal
form (dnf), plus some more massage to preserve the original positive bindings in clauses. Once this is done,
we need a way to solve the possibly universally quantified dis-equalities we have created. A call of the
disunification algorithm described in Section 2.2 (disunify(...)) is enough to obtain a solved form, from
which we can recover the intended negated program. This is best explained in Figure 5.1, which uses the
subcomputation of Vy : z # 0 A z # s(s(y)), detailed in Example 2.2.

Following this drift, an extensive project started in Pisa under the name of intensional negation [BMPT87,
MMP88, BMPT90, ABT90, MPRT90b, FBM93]. In particular [BMPT90] computes the set-theoretic com-
plement of the terms in the negative predicate compiling away the inequalities. The authors restrict to a
class of left-linear non-stratified program called flat, where all predicates are defined by a single clause (and
hence we have no disjunction in the completion) and such that if a head contains non-variable terms, the
body must be a single literal. With some painful source-to-source transformations, programs can be turned
in and out of this format. Thanks to this, the transformation of the completion delineated above yields only
disequation of the form z # t, which the Not algorithm can solve.

If we discard for the moment the problematic issue of local variables, i.e. variables that appear in the
body but not in the head of a clause (as they turn out to become universally quantified in an extensional
sense during the completion transformation), this seems at first sight fairly convincing. On the other hand,
managing control of disunification and rewrite rules requires some ingenuity as the following example shows:
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Example 5.1 Consider the usual program for membership in lists:

member(X, X.XS).
member(X,Y.Y S) « member(X,YS).

Its completion is

Vz,zs(member(z,28) ¢ dr,zs(zs=zaxsAz=1)V

Jz,y,ys(zs = y.ys A z = z A member(z,ys)))

The synthesis of its negation is depicted in Figure 5.2. Not only disunification is more complez, as there
are a few choices of variables where the Ezplosion rule can be applied, but propositional transformations are
difficult to direct as well.

Working with flat programs is not a real alternative, since some form of partial evaluation is needed
to recover some structure in the target program. In fact, the more mature version presented in [FBM93]
embraces the constraint logic programming approach. We will instead give a completely deterministic algo-
rithm to compute the negation of programs. This is based on solving the relative complement problem by
pairing term complement with unification and is proven correct by Corollary 4.40; that is, we do not need
full disunification as we can solve, for example £ # 0AVy : z # s(s(y)) by computing Not(0) N Not(s(s(Y)).

There is one further, more basic difficulty with the completion-based approaches; they use transformations
that are intrinsically classical and turn out to preserve the operational semantics, only because in Horn logic
classical and intuitionistic provability coincide. We discuss this issue further in Section 5.3. We will instead
lift the boolean operations we have introduced on (simple) terms to clauses (programs) and we shall prove
that they still satisfies the usual boolean rules; in particular we will verify that clause complementation
fulfills exclusivity and exhaustivity. This high-level ‘boolean’ language will eventually be compiled into a
version of HHF that is amenable of a complete uniform proof search strategy. We offer an informal discussion
next (Section 5.2).

5.2 Introduction to HHF Complementation

Consider the following judgment to check whether a lambda terms is linear!, if every functional sub-term
uses each of its arguments exactly once:

u
z linear
Az .elinear in z e linear
- linlam®
Az . e linear
e; linear ey linear
linapp

(e1 e2) linear

Az .elinearin z

E——— A T - - linzlmY
Az .z linear in z Az .Ay.elinear in z
Az .e; linear in z . Az .e; linear in z .
linzapp, linzapp,
Az .(e; e3) linear in = Az . (e; e7) linear in z

1Do not confuse this notion with the one which refers to a term not having repeated occurrences of the same existential
variable.
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comp(member)

~ep
Vz, zs(~member(z, zs) ++ Vr,zs(zs #z.xsVz # ) A
Vz,y,ys(zs # y.ysV z # x V -member(z,ys))
~ift
Vz, zs(~member(z, zs) 4 Vz,zs(zs #z.xsVz # ) A
Vz,y,ys{zs #y.ysVz #z)V
Az,y,ys. (zs = y.ys V z = =) A ~member(z, ys)
~dnf
Vz, zs(~member(z, zs) ¢ (dl) Vz,y,zs,ys.(zs #x.xsVz # )N (zs # y.ysV z # 1)

(d2) Vz,zs,(zs # z.xsVz# z) A
dz,y,ys.(zs = y.ys A z = z) A ~member(z, ys)
(d1) Y= B4 R(zs=ni)(1.1)
(dl.l)V(nil £zaxsVz#z)A(nil £yysVz#£z)Azs=nil
HC’I(T)‘
zs = nil
~prettyp
nonmember (X, nil)
(dl) == BiR(zs=w.ws)(1.2)
(d1.2) 3w, wsVz,y,zs,ys.(wws £ z.zsV z # ) A
(wws #yysVz#z)Azs = wws
MEE?(z,y,ws,yS)
Jw(w # z)
~“prettyp
0
(d2) “Mdisunify(Vz,zs(zs#x.z5V2#£T))
’_);IEZ(z,y,zs,ys)
TFYyNIy,ys.zs=yyshz==z
*norm
Jy,ys(zs = y.ys Az # x)
P prettyp

nonmember(X,Y.Y'S) «+ X # Y,nonmember(X,YS).

Figure 5.2: Synthesis of the nonmember predicate
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Intuitively, we check for linearity of a function making sure that the it is linear in its first argument
(judgment ‘Az .e linear in z’) and then recurring on the rest of the expression. Note the rule ‘linlam\®*’
is hypothetical in v and parametric in z; rule linzlmV is instead only parametric in z.

Frameworks based on HHF provide an ideal syntax to represent these judgments; namely, via the usual
encoding introduced in Example 2.6:

Example 5.2

linlam : linear(lam Az .E z)

« linz(Az . E z)

+ (Vz:exp.linear(z) = linear(E x)).
linapp : linear(app E| E,)

« linear(Ey)

+ linear(E»).

linzz : linz(Az.z).
lintapl : linz(Az.app (E) z) E)
« linz(Az . E) ).
linzap2 : linz(Az.app E; (E; 7))
« linz(Az . E; x).
linzlm : linz(Az.lam(\y.E z y))
« (Vy:exp.linz(Az . E 1 y)).

The judgment and its implementation is clearly a decision procedure. It does make sense to ask ourselves
what is its complement. An expression is not linear if there is some function which either does not use its
argument or uses it more than once. We first observe that, since linear is a relation defined via exhaustive
and exclusive patterns term complementation does not play a role. Then, the complement of 1inapp does
not pose any problem, as it is a Horn clause: an application in not linear if either the first element or the
second in not linear.

=linapp : =linear(app E) Es)
+ =linear(E;) V —linear(Ez).

A lambda expression in not linear in two cases: first it is not linear in its first argument:

-linlaml @ -linear(lam(Az . E x))
« ~linz(Az . E x).

Secondly, if its body is not linear. Now, this poses new problems, as we have to negate a hypothetical
and parametric clause. Let us follow our nose and reason by example: suppose we are given, in the empty
context a goal linear(lam(Az . lam(Ay . z))), which is unprovable, since the second lambda term is not linear
in y; the proof tree yields the failure leaf linz(Ay . z), for a new parameter z, in the context z:ezp;linear(z).
Our guiding intuition is that we want to mimic a failure derivation so as to provide a successful derivation
from the negative definition, i.e. a proof of -linz{Ay.z) from z:exp;linear(z); this shows one prominent
feature of complementation of an HHF formula: negation ‘skips’ over V and —, since it needs to mirror
failure from assumptions.

Let us turn to complementing the judgment ‘ linear in z’. A first point to note in that, by encoding an
object expression ‘e’ with a pattern variable, we must make sure that in clause 1inxap1,linxap?2 the variable
z does not occur in the argument which is not checked. We thus embed the clause in the strict A-calculus
and ‘E’ in the simple term ‘E z°'. For the sake of readability we do this only for the two aforementioned
clause and we also hide ()* annotations.
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linzapl : linz(\z.app (F z) (G 2°))
« linz(Az . F z).

linzap2 : linz(\z.app (F z°) (G z))
+ linz(A\z .G z).

Via term complementation and intersection in the strict A-calculus we obtain, among others:

-linzapl : -linz(\z.app (F z') (G z1)).
-linzap2 : -ling(Az.app (F 2°) (G z°)).

Moreover, similarly the case of top-level application, the complement of linxap; holds if the body does not
hold:

-linzapl : =linz(Az.app (F ') (G 2°))
« -linz(\z . F ')

~linzap2 : -linz(A\z.app (F 2°) (G 1))
« =linz(\z .G z').

Now, let us examine clause 1inxlm and let us reconsider the failure leaf linz(Ay.z) from the context
z:exp; linear(z). In a first attempt, let us consider what the complement would be according to the idea
above:

L linglm =linz(Az . lam(Qy . E z y))
+ (Vy:exp. -linz(Az . E z y)).

However, there is no way to obtain a proof of <linz(Ay . z) from the current context. Indeed, the 1inxlm
clause does not carry enough information by itself so that its complement can mimic the failure proof. In a
sense that we will make precise, the clause, and in turn its predicate definition is not assumption-complete:
once it has introduced a new parameter, the clause only specifies how to use it in a positive context. It is up
to us to synthesize its dynamic negative definition, in this case exactly —linz(\y . z). More generally, it is a
characteristic of HHF that the negation of a clause is not enough to determine the behavior of a program
under complementation. We will have to insert (via a source-to-source transformation) additional structure
in a predicate definition in order to completely determine the provability and failure of goals which mention
parameters. By observing the structure of all possible assumption that a predicate definition can make, we
will augment those assumptions with their negative definition. In particular, we first augment the clause
linx1m:

augp(linzlm) : linz(Az.lam(Qy.E z y))
+— (Vy:exp.-linz(A\z .y) — linz(Az . E z y)).

so that, by complementation, we obtain

—augp (linzlm) : -linz(A\z.lam(\y.E z y))
+ (Vy:ezp. ~linz(Az.y) = ~linz(Az. E z y)).

Moreover, we need to do the same with the 1inlam clause, since the 1inx predicate may occur as a subgoal:

augp(linlam) : linear(lam(Az . E 1))
+ linz(\z . E x)
+ (Vz:ezxp. (-linz(Xy . x) A linear(z)) — —linear(E z)).

In summary the negative program is:
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-linapp : -linear(app Ey E»)
+ ~linear(E;) V —linear(Es,).
=linlaml : =linear(lam(Az.E 1))
¢ =linz(Az. E )
V (Vz:exp. (mlinz(Ay . ) A linear(z)) = ~linear(E x)).

-linzapl : -linz(Ar.app (F z') (G z')).
(F 2°) (G 2°).
-linzap3 @ -linz(Ar.app (F ') (G 1°)) « -linz(\z . F ).
(F 2% (G ') « =linz(Mz .G ).
slinzlm @ =linz(Ar.lam(Ay . E z y))

slinzap2 : -linz(Azx.app
=linzapd : -linz(Az.app

— (Vy:exp. linz(Az.y) = =linz(M\z. F z y)).

While it is not impossible? to manually come up with this program by writing predicate definitions
formalizing when terms are strict (that is, variable arguments occur at least once) and wacuous(that is,
arguments are guaranteed not to occur) and then by merging them in the correct fashion, it would be better
to have this done automatically, especially considering changes or extensions of the original program.

Unfortunately the procedure we have outlined is not possible in general. Consider a clause encoding the
introduction rule for implication in natural deduction, which can be used to check whether an implicational
formula trivially holds:

Example 5.3

form : type
imp : form — form — form
a : form
b : form

tmpt : nd(A imp B) « (nd(A) — nd(B)).
Following our earlier remark its complement would be:

—impil : -nd(a)

-impi2 : ~-md(b)

"

~impi : —nd(A4 imp B) « ((VC: form.-nd(C) « C # A) — —-nd(B)).

Apparently, this specification is incorrect since both nd(a imp a) and -nd(a imp a) are derivable from the
empty context. We can isolate one major problem: in clause impi, the assumption nd(A4) that is dynamically
added to the (static) definition of the nd predicate overlaps with the head of the clause. Thus, a goal such
as —nd(a) can be resolved with both the static and the dynamic program, yielding inconsistent solutions.
A symmetrical problem can occur when dynamic and static clauses do differ but their complements do not.
Suppose we introduce a predicate which checks if a number is even and non zero as follows:

e : eu(s(s(N))) « (ev(0) = ev(N)).
Again, our naive algorithm would incorrectly yield:

—el : -ev(0).
-e2 : -ev(s(0)).

le : —ev(s(s(N))) + (VM :nat. —ev(s(M)) = —ev(N)).

2For what is worth, the first three versions of such a program I wrote were mistaken.
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Thus both ev(s(s(0))) and —ev(s(s(0))) are incorrectly provable. The problem here is the overlapping
between the of assumption ev(0) and the complement of the head of the e clause.

We have thus isolated two main issues:
1: Exhaustivity: we need to enrich clauses so that every (ground) goal or its negation is provable.

2. Exclusivity: we need to isolate a significant fragment where it is not the case that both a goal and its
negation are provable.

We will describe in Section 6.6 a procedure that we call augmentation, which, by enriching the program
with the complement of assumptions will, will achieve exhaustivity (Section 6.8); moreover, we will achieve
exclusivity with the restriction to complementable programs, formally introduced in Figure 6.7. To anticipate
the idea, a clause is complementable if every assumption is parametric in some eigenvariable. We will try
to motivate in Section 5.4 why this fragment is adequate to the practice of logical frameworks. Section 5.5
reviews some related work in the area of NF and embedded implication.

5.3 Background

Traditionally (and ideally), a completion construction for the NF rule is an extension of a program, say
E(P) such that, in a logic L equipped with a provability and finite failure relation, say Fr and -k, a
consequence relation |=;, and a negation sign -, for any given goal G (ideally) it holds:

1.y Giff E(P) L G.
2. 41 G iff E(P) =1 -G .

Many such constructions have been proposed for Horn logic, starting from the Closed World Assumption
(CWA) [Rei78]. The Clark completion [Cla78] is perhaps the most successful proof-theoretic and finitary
explanation of NF: the main idea is that clauses in a predicate definition should be seen as an iff-definition,
thus enforcing the minimality condition of its inductive definition; this would correspond, in model-theoretic
terms, to the existence of a least intended model. The if-part states the condition to belong to the inductive
definition, while the only-if part excludes everything else, thus providing a computable approximation to the
CWA. This is well understood and agreed as far as Horn logic is concerned and confirmed by the completeness
of finite failure w.r.t. the completion {Apt90]. .

As observed first by Gabbay [Gab83], the positive logic of embedded implication is not classical but
intuitionistic (actually minimal). When coupled with negation as failure in all its generality, its meta-logic
fails to have some straightforward logic properties, as detailed in Section 5.5. The key difference lies in
the constructive interpretation of implication and its delicate interplay with negation. While a completion
construction is possible, it may be not equivalent to the adjoining of the only-if part of the program. In
particular, it not warranted to form the negation of a program by taking the contrapositive of the completed
definition; this is intrinsically due to the operational semantic of failure: a goal D — G fails iff from the
(scoped) assumption D we have that G fails. Let us try to mirror this with a logical connective:

~(D=G) & D—=-G (5.1)
Similarly for parametric judgments:
~(V2:4.G) & Vr:A.-G

No standard logic of negation satisfies the above rules. In particular, it is erroneous to formulate Clark’s
completion using Nelson’s strong negation [Nel49}, which is currently held as the meta-logic of negation elim-
ination in the Horn setting [GL90, Pea90]. Indeed, strong negation brings too much duality to intuitionistic
logic as it is pushed in through connectives and quantifiers; in particular if ~ denotes strong negation, the
following holds:

~D—=G) & DA~G
~(Vz:A.G) & 3z:A ~G
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Strong negation may be “the logic of information structures” [Wan93}, as far as Horn logic is concerned,
but it is definitely not the meta-logic of negation elimination in logical frameworks based on HHF. It is
not simply a question to endow intuitionism with a semi-classical notion of negation, while preserving the
disjunction and existential property. The hard point is not negation in itself, but its interaction with a more
operational Brower-Heyting-Kolmogorov interpretation of implication.

Example 5.4 Consider the program consisting only of the clause a + (b = c¢); the standard completion
would be
ae (b= c)A-bA-e

Now, ‘a’ fails and hence ‘—a’ should follow from the iff-completion: still ‘a’ intuitionistically (yet not mini-
mally) follows, while ‘—~a’ is logically independent exactly due to the failure of equivalence (5.1).

We explore in Section 5.5 how this issue has been investigated in the literature. This is relevant to our
enterprise because:

¢ In the Horn setting, the iff-completion has been the preferred way to logically motivate the transfor-
mational approach to negation, as we have seen in Section 5.1.

e In [GO98] the authors persuasively argue that the unrestricted addition of NF to languages such as
N-Prolog requires the switch to a (three-valued) modal logic.

Since we need to express the negation of a predicate in the same language where the predicate is formu-
lated, we choose to restrict the set of programs we deem complementable in a novel and extensive way. This
will help to close the gap between the two poles usually associated to classic and intuitionistic logic program-
ming, i.e. the closed versus open world assumption. We will define a class of programs which extend the
current database in a specific regular way, by ensuring that static and dynamic clauses never overlap. This
property extends w.r.t. the complement program and thus has the side effect of guaranteeing the consistency
of the completion. Finally we will require every goal to conform to such a schema context. We call this
approach the Regular World Assumption (RWA). We argue next (Section 5.4) that this class of programs is
just what the doctor ordered for logical frameworks.

5.4 Motivation

Embedded implication in intuitionistic logic programming has been successfully used in various areas of logic
programming; we can roughly divide those into:

e Meta-programming, namely specifying and implementing (the meta-theory of) deductive systems.
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